Files
cpuminer-opt-gpu/algo/lyra2/lyra2rev2.c
Jay D Dee af1c940919 v3.7.5
2017-12-08 15:39:28 -05:00

149 lines
4.3 KiB
C

#include <memory.h>
#include "algo-gate-api.h"
#include "algo/blake/sph_blake.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "lyra2.h"
#include "avxdefs.h"
// This gets allocated when miner_thread starts up and is never freed.
// It's not a leak because the only way to allocate it again is to exit
// the thread and that only occurs when the entire program exits.
__thread uint64_t* l2v2_wholeMatrix;
typedef struct {
cubehashParam cube1;
cubehashParam cube2;
sph_blake256_context blake;
sph_keccak256_context keccak;
sph_skein256_context skein;
sph_bmw256_context bmw;
} lyra2v2_ctx_holder;
static lyra2v2_ctx_holder lyra2v2_ctx;
static __thread sph_blake256_context l2v2_blake_mid;
void init_lyra2rev2_ctx()
{
cubehashInit( &lyra2v2_ctx.cube1, 256, 16, 32 );
cubehashInit( &lyra2v2_ctx.cube2, 256, 16, 32 );
sph_blake256_init( &lyra2v2_ctx.blake );
sph_keccak256_init( &lyra2v2_ctx.keccak );
sph_skein256_init( &lyra2v2_ctx.skein );
sph_bmw256_init( &lyra2v2_ctx.bmw );
}
void l2v2_blake256_midstate( const void* input )
{
memcpy( &l2v2_blake_mid, &lyra2v2_ctx.blake, sizeof l2v2_blake_mid );
sph_blake256( &l2v2_blake_mid, input, 64 );
}
void lyra2rev2_hash( void *state, const void *input )
{
lyra2v2_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &lyra2v2_ctx, sizeof(lyra2v2_ctx) );
uint8_t hash[128] __attribute__ ((aligned (64)));
#define hashA hash
#define hashB hash+64
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
memcpy( &ctx.blake, &l2v2_blake_mid, sizeof l2v2_blake_mid );
sph_blake256( &ctx.blake, (uint8_t*)input + midlen, tail );
sph_blake256_close( &ctx.blake, hashA );
sph_keccak256( &ctx.keccak, hashA, 32 );
sph_keccak256_close(&ctx.keccak, hashB);
cubehashUpdateDigest( &ctx.cube1, (byte*) hashA,
(const byte*) hashB, 32 );
LYRA2REV2( l2v2_wholeMatrix, hashA, 32, hashA, 32, hashA, 32, 1, 4, 4 );
sph_skein256( &ctx.skein, hashA, 32 );
sph_skein256_close( &ctx.skein, hashB );
cubehashUpdateDigest( &ctx.cube2, (byte*) hashA,
(const byte*) hashB, 32 );
sph_bmw256( &ctx.bmw, hashA, 32 );
sph_bmw256_close( &ctx.bmw, hashB );
memcpy( state, hashB, 32 );
}
int scanhash_lyra2rev2(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t endiandata[20] __attribute__ ((aligned (64)));
uint32_t hash[8] __attribute__((aligned(64)));
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
const uint32_t Htarg = ptarget[7];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
swab32_array( endiandata, pdata, 20 );
l2v2_blake256_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
lyra2rev2_hash(hash, endiandata);
if (hash[7] <= Htarg )
{
if( fulltest(hash, ptarget) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
void lyra2rev2_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool lyra2rev2_thread_init()
{
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int i = (int64_t)ROW_LEN_BYTES * 4; // nRows;
l2v2_wholeMatrix = _mm_malloc( i, 64 );
return l2v2_wholeMatrix;
}
bool register_lyra2rev2_algo( algo_gate_t* gate )
{
init_lyra2rev2_ctx();
gate->optimizations = AVX_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
gate->set_target = (void*)&lyra2rev2_set_target;
return true;
};