Files
cpuminer-opt-gpu/algo/sha/sha256dt.c
Jay D Dee be88afc349 v3.23.2
2023-09-21 12:34:06 -04:00

386 lines
14 KiB
C

#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "sha256-hash.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SHA256DT_16WAY 1
#elif defined(__SHA__)
#define SHA256DT_SHA 1
#elif defined(__AVX2__)
#define SHA256DT_8WAY 1
#else
#define SHA256DT_4WAY 1
#endif
static const uint32_t sha256dt_iv[8] __attribute__ ((aligned (32))) =
{
0xdfa9bf2c, 0xb72074d4, 0x6bb01122, 0xd338e869,
0xaa3ff126, 0x475bbf30, 0x8fd52e5b, 0x9f75c9ad
};
#if defined(SHA256DT_SHA)
int scanhash_sha256dt_sha( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstatea[8] __attribute__ ((aligned (32)));
uint32_t mstateb[8] __attribute__ ((aligned (32)));
uint32_t sstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_opt_transform_le( mstatea, pdata, sha256dt_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = 0;
block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 0x480; // funky bit count
sha256_ni_prehash_3rounds( mstateb, block1a, sstate, mstatea);
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 0x300; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_ni2way_final_rounds( block2a, block2b, block1a, block1b,
mstateb, mstateb, sstate, sstate );
sha256_ni2way_transform_le( hasha, hashb, block2a, block2b,
sha256dt_iv, sha256dt_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_m128i( hasha, 0 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 0 ), shuf_bswap32 );
casti_m128i( hasha, 1 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 1 ), shuf_bswap32 );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_m128i( hashb, 0 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 0 ), shuf_bswap32 );
casti_m128i( hashb, 1 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 1 ), shuf_bswap32 );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256DT_16WAY)
int scanhash_sha256dt_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m512i block[16] __attribute__ ((aligned (128)));
__m512i buf[16] __attribute__ ((aligned (64)));
__m512i hash32[8] __attribute__ ((aligned (64)));
__m512i mstate1[8] __attribute__ ((aligned (64)));
__m512i mstate2[8] __attribute__ ((aligned (64)));
__m512i istate[8] __attribute__ ((aligned (64)));
__m512i mexp_pre[8] __attribute__ ((aligned (64)));
uint32_t phash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
const __m512i last_byte = _mm512_set1_epi32( 0x80000000 );
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const __m512i sixteen = _mm512_set1_epi32( 16 );
const bool bench = opt_benchmark;
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
// prehash first block directly from pdata
sha256_transform_le( phash, pdata, sha256dt_iv );
// vectorize block 0 hash for second block
mstate1[0] = _mm512_set1_epi32( phash[0] );
mstate1[1] = _mm512_set1_epi32( phash[1] );
mstate1[2] = _mm512_set1_epi32( phash[2] );
mstate1[3] = _mm512_set1_epi32( phash[3] );
mstate1[4] = _mm512_set1_epi32( phash[4] );
mstate1[5] = _mm512_set1_epi32( phash[5] );
mstate1[6] = _mm512_set1_epi32( phash[6] );
mstate1[7] = _mm512_set1_epi32( phash[7] );
// second message block data, with nonce & padding
buf[0] = _mm512_set1_epi32( pdata[16] );
buf[1] = _mm512_set1_epi32( pdata[17] );
buf[2] = _mm512_set1_epi32( pdata[18] );
buf[3] = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
buf[4] = last_byte;
memset_zero_512( buf+5, 10 );
buf[15] = _mm512_set1_epi32( 0x480 ); // sha256dt funky bit count
// partially pre-expand & prehash second message block, avoiding the nonces
sha256_16way_prehash_3rounds( mstate2, mexp_pre, buf, mstate1 );
// vectorize IV for second hash
istate[0] = _mm512_set1_epi32( sha256dt_iv[0] );
istate[1] = _mm512_set1_epi32( sha256dt_iv[1] );
istate[2] = _mm512_set1_epi32( sha256dt_iv[2] );
istate[3] = _mm512_set1_epi32( sha256dt_iv[3] );
istate[4] = _mm512_set1_epi32( sha256dt_iv[4] );
istate[5] = _mm512_set1_epi32( sha256dt_iv[5] );
istate[6] = _mm512_set1_epi32( sha256dt_iv[6] );
istate[7] = _mm512_set1_epi32( sha256dt_iv[7] );
// initialize padding for second hash
block[ 8] = last_byte;
memset_zero_512( block+9, 6 );
block[15] = _mm512_set1_epi32( 0x300 ); // bit count
do
{
sha256_16way_final_rounds( block, buf, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_16way_transform_le_short(
hash32, block, istate, ptarget ) ) )
{
for ( int lane = 0; lane < 16; lane++ )
{
extr_lane_16x32( phash, hash32, lane, 256 );
casti_m256i( phash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( phash, 0 ), bswap_shuf );
if ( likely( valid_hash( phash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, phash, mythr );
}
}
}
buf[3] = _mm512_add_epi32( buf[3], sixteen );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256DT_8WAY)
int scanhash_sha256dt_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m256i vdata[32] __attribute__ ((aligned (64)));
__m256i block[16] __attribute__ ((aligned (32)));
__m256i hash32[8] __attribute__ ((aligned (32)));
__m256i istate[8] __attribute__ ((aligned (32)));
__m256i mstate1[8] __attribute__ ((aligned (32)));
__m256i mstate2[8] __attribute__ ((aligned (32)));
__m256i mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m256i *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m256i last_byte = _mm256_set1_epi32( 0x80000000 );
const __m256i eight = _mm256_set1_epi32( 8 );
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
for ( int i = 0; i < 19; i++ )
vdata[i] = _mm256_set1_epi32( pdata[i] );
*noncev = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_256( vdata+16 + 5, 10 );
vdata[16+15] = _mm256_set1_epi32( 0x480 );
block[ 8] = last_byte;
memset_zero_256( block + 9, 6 );
block[15] = _mm256_set1_epi32( 0x300 );
// initialize state for swecond hash
istate[0] = _mm256_set1_epi64x( 0xdfa9bf2cdfa9bf2c );
istate[1] = _mm256_set1_epi64x( 0xb72074d4b72074d4 );
istate[2] = _mm256_set1_epi64x( 0x6bb011226bb01122 );
istate[3] = _mm256_set1_epi64x( 0xd338e869d338e869 );
istate[4] = _mm256_set1_epi64x( 0xaa3ff126aa3ff126 );
istate[5] = _mm256_set1_epi64x( 0x475bbf30475bbf30 );
istate[6] = _mm256_set1_epi64x( 0x8fd52e5b8fd52e5b );
istate[7] = _mm256_set1_epi64x( 0x9f75c9ad9f75c9ad );
sha256_8way_transform_le( mstate1, vdata, istate );
// Do 3 rounds on the first 12 bytes of the next block
sha256_8way_prehash_3rounds( mstate2, mexp_pre, vdata + 16, mstate1 );
do
{
sha256_8way_final_rounds( block, vdata+16, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_8way_transform_le_short( hash32, block,
istate, ptarget ) ) )
{
for ( int lane = 0; lane < 8; lane++ )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
casti_m256i( lane_hash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( lane_hash, 0 ), bswap_shuf );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lane_hash, mythr );
}
}
}
*noncev = _mm256_add_epi32( *noncev, eight );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256DT_4WAY)
int scanhash_sha256dt_4way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m128i vdata[32] __attribute__ ((aligned (64)));
__m128i block[16] __attribute__ ((aligned (32)));
__m128i hash32[8] __attribute__ ((aligned (32)));
__m128i initstate[8] __attribute__ ((aligned (32)));
__m128i midstate[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m128i *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i last_byte = _mm_set1_epi32( 0x80000000 );
const __m128i four = _mm_set1_epi32( 4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = _mm_set1_epi32( pdata[i] );
*noncev = _mm_set_epi32( n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_128( vdata+16 + 5, 10 );
vdata[16+15] = _mm_set1_epi32( 0x480 );
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
block[15] = _mm_set1_epi32( 0x300 );
// initialize state
initstate[0] = _mm_set1_epi64x( 0xdfa9bf2cdfa9bf2c );
initstate[1] = _mm_set1_epi64x( 0xb72074d4b72074d4 );
initstate[2] = _mm_set1_epi64x( 0x6bb011226bb01122 );
initstate[3] = _mm_set1_epi64x( 0xd338e869d338e869 );
initstate[4] = _mm_set1_epi64x( 0xaa3ff126aa3ff126 );
initstate[5] = _mm_set1_epi64x( 0x475bbf30475bbf30 );
initstate[6] = _mm_set1_epi64x( 0x8fd52e5b8fd52e5b );
initstate[7] = _mm_set1_epi64x( 0x9f75c9ad9f75c9ad );
// hash first 64 bytes of data
sha256_4way_transform_le( midstate, vdata, initstate );
do
{
sha256_4way_transform_le( block, vdata+16, midstate );
sha256_4way_transform_le( hash32, block, initstate );
// if ( sha256_4way_transform_le_short( hash32, block, initstate, ptarget ) )
// {
mm128_block_bswap_32( hash32, hash32 );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_4x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lane_hash, mythr );
}
}
// }
*noncev = _mm_add_epi32( *noncev, four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
bool register_sha256dt_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
#if defined(SHA256DT_16WAY)
gate->scanhash = (void*)&scanhash_sha256dt_16way;
#elif defined(SHA256DT_SHA)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_sha;
#elif defined(SHA256DT_8WAY)
gate->scanhash = (void*)&scanhash_sha256dt_8way;
#else
gate->scanhash = (void*)&scanhash_sha256dt_4way;
#endif
return true;
}