Files
cpuminer-opt-gpu/algo/blake/sph_blake2b.c
Jay D Dee b339450898 v3.21.3
2023-03-11 14:54:49 -05:00

277 lines
9.4 KiB
C

/*
* Copyright 2009 Colin Percival, 2014 savale
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "simd-utils.h"
#include "algo/sha/sph_types.h"
#include "sph_blake2b.h"
// Little-endian byte access.
#define B2B_GET64(p) \
(((uint64_t) ((uint8_t *) (p))[0]) ^ \
(((uint64_t) ((uint8_t *) (p))[1]) << 8) ^ \
(((uint64_t) ((uint8_t *) (p))[2]) << 16) ^ \
(((uint64_t) ((uint8_t *) (p))[3]) << 24) ^ \
(((uint64_t) ((uint8_t *) (p))[4]) << 32) ^ \
(((uint64_t) ((uint8_t *) (p))[5]) << 40) ^ \
(((uint64_t) ((uint8_t *) (p))[6]) << 48) ^ \
(((uint64_t) ((uint8_t *) (p))[7]) << 56))
#if defined(__AVX2__)
#define BLAKE2B_G( Sa, Sb, Sc, Sd, Se, Sf, Sg, Sh ) \
{ \
V[0] = _mm256_add_epi64( V[0], _mm256_add_epi64( V[1], \
_mm256_set_epi64x( m[ sigmaR[ Sg ] ], m[ sigmaR[ Se ] ], \
m[ sigmaR[ Sc ] ], m[ sigmaR[ Sa ] ] ) ) ); \
V[3] = mm256_swap64_32( _mm256_xor_si256( V[3], V[0] ) ); \
V[2] = _mm256_add_epi64( V[2], V[3] ); \
V[1] = mm256_shuflr64_24( _mm256_xor_si256( V[1], V[2] ) ); \
\
V[0] = _mm256_add_epi64( V[0], _mm256_add_epi64( V[1], \
_mm256_set_epi64x( m[ sigmaR[ Sh ] ], m[ sigmaR[ Sf ] ], \
m[ sigmaR[ Sd ] ], m[ sigmaR[ Sb ] ] ) ) ); \
V[3] = mm256_shuflr64_16( _mm256_xor_si256( V[3], V[0] ) ); \
V[2] = _mm256_add_epi64( V[2], V[3] ); \
V[1] = mm256_ror_64( _mm256_xor_si256( V[1], V[2] ), 63 ); \
}
#define BLAKE2B_ROUND( R ) \
{ \
__m256i *V = (__m256i*)v; \
const uint8_t *sigmaR = sigma[R]; \
BLAKE2B_G( 0, 1, 2, 3, 4, 5, 6, 7 ); \
V[3] = mm256_shufll_64( V[3] ); \
V[2] = mm256_swap_128( V[2] ); \
V[1] = mm256_shuflr_64( V[1] ); \
BLAKE2B_G( 8, 9, 10, 11, 12, 13, 14, 15 ); \
V[3] = mm256_shuflr_64( V[3] ); \
V[2] = mm256_swap_128( V[2] ); \
V[1] = mm256_shufll_64( V[1] ); \
}
#elif defined(__SSE2__)
// always true
#define BLAKE2B_G( Va, Vb, Vc, Vd, Sa, Sb, Sc, Sd ) \
{ \
Va = _mm_add_epi64( Va, _mm_add_epi64( Vb, \
_mm_set_epi64x( m[ sigmaR[ Sc ] ], m[ sigmaR[ Sa ] ] ) ) ); \
Vd = mm128_swap64_32( _mm_xor_si128( Vd, Va ) ); \
Vc = _mm_add_epi64( Vc, Vd ); \
Vb = mm128_shuflr64_24( _mm_xor_si128( Vb, Vc ) ); \
\
Va = _mm_add_epi64( Va, _mm_add_epi64( Vb, \
_mm_set_epi64x( m[ sigmaR[ Sd ] ], m[ sigmaR[ Sb ] ] ) ) ); \
Vd = mm128_shuflr64_16( _mm_xor_si128( Vd, Va ) ); \
Vc = _mm_add_epi64( Vc, Vd ); \
Vb = mm128_ror_64( _mm_xor_si128( Vb, Vc ), 63 ); \
}
#define BLAKE2B_ROUND( R ) \
{ \
__m128i *V = (__m128i*)v; \
__m128i V2, V3, V6, V7; \
const uint8_t *sigmaR = sigma[R]; \
BLAKE2B_G( V[0], V[2], V[4], V[6], 0, 1, 2, 3 ); \
BLAKE2B_G( V[1], V[3], V[5], V[7], 4, 5, 6, 7 ); \
V2 = mm128_alignr_64( V[3], V[2], 1 ); \
V3 = mm128_alignr_64( V[2], V[3], 1 ); \
V6 = mm128_alignr_64( V[6], V[7], 1 ); \
V7 = mm128_alignr_64( V[7], V[6], 1 ); \
BLAKE2B_G( V[0], V2, V[5], V6, 8, 9, 10, 11 ); \
BLAKE2B_G( V[1], V3, V[4], V7, 12, 13, 14, 15 ); \
V[2] = mm128_alignr_64( V2, V3, 1 ); \
V[3] = mm128_alignr_64( V3, V2, 1 ); \
V[6] = mm128_alignr_64( V7, V6, 1 ); \
V[7] = mm128_alignr_64( V6, V7, 1 ); \
}
#else
// never used, SSE2 is always available
#ifndef ROTR64
#define ROTR64(x, y) (((x) >> (y)) ^ ((x) << (64 - (y))))
#endif
#define BLAKE2B_G( R, Va, Vb, Vc, Vd, Sa, Sb ) \
{ \
Va = Va + Vb + m[ sigma[R][Sa] ]; \
Vd = ROTR64( Vd ^ Va, 32 ); \
Vc = Vc + Vd; \
Vb = ROTR64( Vb ^ Vc, 24 ); \
\
Va = Va + Vb + m[ sigma[R][Sb] ]; \
Vd = ROTR64( Vd ^ Va, 16 ); \
Vc = Vc + Vd; \
Vb = ROTR64( Vb ^ Vc, 63 ); \
}
#define BLAKE2B_ROUND( R ) \
{ \
BLAKE2B_G( R, v[ 0], v[ 4], v[ 8], v[12], 0, 1 ); \
BLAKE2B_G( R, v[ 1], v[ 5], v[ 9], v[13], 2, 3 ); \
BLAKE2B_G( R, v[ 2], v[ 6], v[10], v[14], 4, 5 ); \
BLAKE2B_G( R, v[ 3], v[ 7], v[11], v[15], 6, 7 ); \
BLAKE2B_G( R, v[ 0], v[ 5], v[10], v[15], 8, 9 ); \
BLAKE2B_G( R, v[ 1], v[ 6], v[11], v[12], 10, 11 ); \
BLAKE2B_G( R, v[ 2], v[ 7], v[ 8], v[13], 12, 13 ); \
BLAKE2B_G( R, v[ 3], v[ 4], v[ 9], v[14], 14, 15 ); \
}
#endif
// Initialization Vector.
static const uint64_t blake2b_iv[8] __attribute__ ((aligned (32))) =
{
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
static const uint8_t sigma[12][16] __attribute__ ((aligned (32))) =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
// Compression function. "last" flag indicates last block.
static void blake2b_compress( sph_blake2b_ctx *ctx, int last )
{
uint64_t v[16] __attribute__ ((aligned (32)));
uint64_t m[16] __attribute__ ((aligned (32)));
int i;
for (i = 0; i < 8; i++) { // init work variables
v[i] = ctx->h[i];
v[i + 8] = blake2b_iv[i];
}
v[12] ^= ctx->t[0]; // low 64 bits of offset
v[13] ^= ctx->t[1]; // high 64 bits
if (last) // last block flag set ?
v[14] = ~v[14];
for (i = 0; i < 16; i++) // get little-endian words
m[i] = B2B_GET64(&ctx->b[8 * i]);
for (i = 0; i < 12; i++)
BLAKE2B_ROUND( i );
for( i = 0; i < 8; ++i )
ctx->h[i] ^= v[i] ^ v[i + 8];
}
// Initialize the hashing context "ctx" with optional key "key".
// 1 <= outlen <= 64 gives the digest size in bytes.
// Secret key (also <= 64 bytes) is optional (keylen = 0).
int sph_blake2b_init( sph_blake2b_ctx *ctx, size_t outlen, const void *key,
size_t keylen ) // (keylen=0: no key)
{
size_t i;
if (outlen == 0 || outlen > 64 || keylen > 64)
return -1; // illegal parameters
for (i = 0; i < 8; i++) // state, "param block"
ctx->h[i] = blake2b_iv[i];
ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen;
ctx->t[0] = 0; // input count low word
ctx->t[1] = 0; // input count high word
ctx->c = 0; // pointer within buffer
ctx->outlen = outlen;
for (i = keylen; i < 128; i++) // zero input block
ctx->b[i] = 0;
if (keylen > 0) {
sph_blake2b_update(ctx, key, keylen);
ctx->c = 128; // at the end
}
return 0;
}
// Add "inlen" bytes from "in" into the hash.
void sph_blake2b_update( sph_blake2b_ctx *ctx, const void *in, size_t inlen )
{
size_t i;
for (i = 0; i < inlen; i++) {
if (ctx->c == 128) { // buffer full ?
ctx->t[0] += ctx->c; // add counters
if (ctx->t[0] < ctx->c) // carry overflow ?
ctx->t[1]++; // high word
blake2b_compress(ctx, 0); // compress (not last)
ctx->c = 0; // counter to zero
}
ctx->b[ctx->c++] = ((const uint8_t *) in)[i];
}
}
// Generate the message digest (size given in init).
// Result placed in "out".
void sph_blake2b_final( sph_blake2b_ctx *ctx, void *out )
{
size_t i;
ctx->t[0] += ctx->c; // mark last block offset
if (ctx->t[0] < ctx->c) // carry overflow
ctx->t[1]++; // high word
while (ctx->c < 128) // fill up with zeros
ctx->b[ctx->c++] = 0;
blake2b_compress(ctx, 1); // final block flag = 1
// little endian convert and store
for (i = 0; i < ctx->outlen; i++) {
((uint8_t *) out)[i] =
(ctx->h[i >> 3] >> (8 * (i & 7))) & 0xFF;
}
}