Files
cpuminer-opt-gpu/algo/m7m.c
Jay D Dee a90d75b8f5 v3.7.10
2018-01-16 15:11:44 -05:00

391 lines
12 KiB
C

#include "cpuminer-config.h"
#include "algo-gate-api.h"
#include <gmp.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <math.h>
#include "algo/sha/sph_sha2.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/ripemd/sph_ripemd.h"
#include <openssl/sha.h>
#define EPSa DBL_EPSILON
#define EPS1 DBL_EPSILON
#define EPS2 3.0e-11
inline double exp_n(double xt)
{
if(xt < -700.0)
return 0;
else if(xt > 700.0)
return 1e200;
else if(xt > -0.8e-8 && xt < 0.8e-8)
return (1.0 + xt);
else
return exp(xt);
}
inline double exp_n2(double x1, double x2)
{
double p1 = -700., p2 = -37., p3 = -0.8e-8, p4 = 0.8e-8, p5 = 37., p6 = 700.;
double xt = x1 - x2;
if (xt < p1+1.e-200)
return 1.;
else if (xt > p1 && xt < p2 + 1.e-200)
return ( 1. - exp(xt) );
else if (xt > p2 && xt < p3 + 1.e-200)
return ( 1. / (1. + exp(xt)) );
else if (xt > p3 && xt < p4)
return ( 1. / (2. + xt) );
else if (xt > p4 - 1.e-200 && xt < p5)
return ( exp(-xt) / (1. + exp(-xt)) );
else if (xt > p5 - 1.e-200 && xt < p6)
return ( exp(-xt) );
else if (xt > p6 - 1.e-200)
return 0.;
}
double swit2_(double wvnmb)
{
return pow( (5.55243*(exp_n(-0.3*wvnmb/15.762) - exp_n(-0.6*wvnmb/15.762)))*wvnmb, 0.5)
/ 1034.66 * pow(sin(wvnmb/65.), 2.);
}
double GaussianQuad_N2(const double x1, const double x2)
{
double s=0.0;
double x[6], w[6];
//gauleg(a2, b2, x, w);
double z1, z, xm, xl, pp, p3, p2, p1;
xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for(int i=1;i<=3;i++)
{
z = (i == 1) ? 0.909632 : -0.0;
z = (i == 2) ? 0.540641 : z;
do
{
p1 = z;
p2 = 1;
p3 = 0;
p3=1;
p2=z;
p1=((3.0 * z * z) - 1) / 2;
p3=p2;
p2=p1;
p1=((5.0 * z * p2) - (2.0 * z)) / 3;
p3=p2;
p2=p1;
p1=((7.0 * z * p2) - (3.0 * p3)) / 4;
p3=p2;
p2=p1;
p1=((9.0 * z * p2) - (4.0 * p3)) / 5;
pp=5*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp;
} while (fabs(z-z1) > 3.0e-11);
x[i]=xm-xl*z;
x[5+1-i]=xm+xl*z;
w[i]=2.0*xl/((1.0-z*z)*pp*pp);
w[5+1-i]=w[i];
}
for(int j=1; j<=5; j++) s += w[j]*swit2_(x[j]);
return s;
}
uint32_t sw2_(int nnounce)
{
double wmax = ((sqrt((double)(nnounce))*(1.+EPSa))/450+100);
return ((uint32_t)(GaussianQuad_N2(0., wmax)*(1.+EPSa)*1.e6));
}
typedef struct {
#ifndef USE_SPH_SHA
SHA256_CTX sha256;
SHA512_CTX sha512;
#else
sph_sha256_context sha256;
sph_sha512_context sha512;
#endif
sph_keccak512_context keccak;
sph_whirlpool_context whirlpool;
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_ripemd160_context ripemd;
} m7m_ctx_holder;
m7m_ctx_holder m7m_ctx;
void init_m7m_ctx()
{
#ifndef USE_SPH_SHA
SHA256_Init( &m7m_ctx.sha256 );
SHA512_Init( &m7m_ctx.sha512 );
#else
sph_sha256_init( &m7m_ctx.sha256 );
sph_sha512_init( &m7m_ctx.sha512 );
#endif
sph_keccak512_init( &m7m_ctx.keccak );
sph_whirlpool_init( &m7m_ctx.whirlpool );
sph_haval256_5_init( &m7m_ctx.haval );
sph_tiger_init( &m7m_ctx.tiger );
sph_ripemd160_init( &m7m_ctx.ripemd );
}
#define BITS_PER_DIGIT 3.32192809488736234787
#define EPS (DBL_EPSILON)
#define NM7M 5
#define SW_DIVS 5
#define M7_MIDSTATE_LEN 76
int scanhash_m7m_hash( int thr_id, struct work* work,
uint64_t max_nonce, unsigned long *hashes_done )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t data[32] __attribute__((aligned(64)));
uint32_t *data_p64 = data + (M7_MIDSTATE_LEN / sizeof(data[0]));
uint32_t hash[8] __attribute__((aligned(64)));
uint8_t bhash[7][64] __attribute__((aligned(64)));
uint32_t n = pdata[19] - 1;
uint32_t usw_, mpzscale;
const uint32_t first_nonce = pdata[19];
char data_str[161], hash_str[65], target_str[65];
//uint8_t *bdata = 0;
uint8_t bdata[8192] __attribute__ ((aligned (64)));
int rc = 0, i, digits;
int bytes;
size_t p = sizeof(unsigned long), a = 64/p, b = 32/p;
m7m_ctx_holder ctx1, ctx2 __attribute__ ((aligned (64)));
memcpy( &ctx1, &m7m_ctx, sizeof(m7m_ctx) );
#ifndef USE_SPH_SHA
SHA256_CTX ctxf_sha256;
#else
sph_sha256_context ctxf_sha256;
#endif
memcpy(data, pdata, 80);
#ifndef USE_SPH_SHA
SHA256_Update( &ctx1.sha256, data, M7_MIDSTATE_LEN );
SHA512_Update( &ctx1.sha512, data, M7_MIDSTATE_LEN );
#else
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
#endif
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
sph_haval256_5( &ctx1.haval, data, M7_MIDSTATE_LEN );
sph_tiger( &ctx1.tiger, data, M7_MIDSTATE_LEN );
sph_ripemd160( &ctx1.ripemd, data, M7_MIDSTATE_LEN );
// the following calculations can be performed once and the results shared
mpz_t magipi, magisw, product, bns0, bns1;
mpf_t magifpi, magifpi0, mpt1, mpt2, mptmp, mpten;
mpz_inits(magipi, magisw, bns0, bns1, NULL);
mpz_init2(product, 512);
mp_bitcnt_t prec0 = (long int)((int)((sqrt((double)(INT_MAX))*(1.+EPS))/9000+75)*BITS_PER_DIGIT+16);
mpf_set_default_prec(prec0);
mpf_init(magifpi);
mpf_init(magifpi0);
mpf_init(mpt1);
mpf_init(mpt2);
mpf_init(mptmp);
mpf_init_set_ui(mpten, 10);
mpf_set_str(mpt2, "0.8e3b1a9b359805c2e54c6415037f2e336893b6457f7754f6b4ae045eb6c5f2bedb26a114030846be7", 16);
mpf_set_str(magifpi0, "0.b7bfc6837e20bdb22653f1fc419f6bc33ca80eb65b7b0246f7f3b65689560aea1a2f2fd95f254d68c", 16);
do {
data[19] = ++n;
memset(bhash, 0, 7 * 64);
memcpy( &ctx2, &ctx1, sizeof(m7m_ctx) );
// with 4 way can a single midstate be shared among lanes?
// do sinlge round of midstate and inyerleave for final
#ifndef USE_SPH_SHA
SHA256_Update( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
SHA256_Final( (unsigned char*) (bhash[0]), &ctx2.sha256 );
SHA512_Update( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
SHA512_Final( (unsigned char*) (bhash[1]), &ctx2.sha512 );
#else
sph_sha256( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha256_close( &ctx2.sha256, (void*)(bhash[0]) );
sph_sha512( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha512_close( &ctx2.sha512, (void*)(bhash[1]) );
#endif
sph_keccak512( &ctx2.keccak, data_p64, 80 - M7_MIDSTATE_LEN );
sph_keccak512_close( &ctx2.keccak, (void*)(bhash[2]) );
sph_whirlpool( &ctx2.whirlpool, data_p64, 80 - M7_MIDSTATE_LEN );
sph_whirlpool_close( &ctx2.whirlpool, (void*)(bhash[3]) );
sph_haval256_5( &ctx2.haval, data_p64, 80 - M7_MIDSTATE_LEN );
sph_haval256_5_close( &ctx2.haval, (void*)(bhash[4])) ;
sph_tiger( &ctx2.tiger, data_p64, 80 - M7_MIDSTATE_LEN );
sph_tiger_close( &ctx2.tiger, (void*)(bhash[5]) );
sph_ripemd160( &ctx2.ripemd, data_p64, 80 - M7_MIDSTATE_LEN );
sph_ripemd160_close( &ctx2.ripemd, (void*)(bhash[6]) );
// 4 way serial
mpz_import(bns0, a, -1, p, -1, 0, bhash[0]);
mpz_set(bns1, bns0);
mpz_set(product, bns0);
for ( i=1; i < 7; i++ )
{
mpz_import(bns0, a, -1, p, -1, 0, bhash[i]);
mpz_add(bns1, bns1, bns0);
mpz_mul(product, product, bns0);
}
mpz_mul(product, product, bns1);
mpz_mul(product, product, product);
bytes = mpz_sizeinbase(product, 256);
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
#ifndef USE_SPH_SHA
SHA256_Init( &ctxf_sha256 );
SHA256_Update( &ctxf_sha256, bdata, bytes );
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
#else
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
#endif
// do once and share
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
mpf_set_prec_raw(magifpi, prec);
mpf_set_prec_raw(mptmp, prec);
mpf_set_prec_raw(mpt1, prec);
mpf_set_prec_raw(mpt2, prec);
usw_ = sw2_(n/2);
mpzscale = 1;
mpz_set_ui(magisw, usw_);
for ( i = 0; i < 5; i++ )
{
mpf_set_d(mpt1, 0.25*mpzscale);
mpf_sub(mpt1, mpt1, mpt2);
mpf_abs(mpt1, mpt1);
mpf_div(magifpi, magifpi0, mpt1);
mpf_pow_ui(mptmp, mpten, digits >> 1);
mpf_mul(magifpi, magifpi, mptmp);
mpz_set_f(magipi, magifpi);
mpz_add(magipi,magipi,magisw);
mpz_add(product,product,magipi);
// share magipi, product and do serial
mpz_import(bns0, b, -1, p, -1, 0, (void*)(hash));
mpz_add(bns1, bns1, bns0);
mpz_mul(product,product,bns1);
mpz_cdiv_q (product, product, bns0);
bytes = mpz_sizeinbase(product, 256);
mpzscale=bytes;
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
#ifndef USE_SPH_SHA
SHA256_Init( &ctxf_sha256 );
SHA256_Update( &ctxf_sha256, bdata, bytes );
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
#else
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
#endif
}
// this is the scanhash part
const unsigned char *hash_ = (const unsigned char *)hash;
const unsigned char *target_ = (const unsigned char *)ptarget;
for ( i = 31; i >= 0; i-- )
{
if ( hash_[i] != target_[i] )
{
rc = hash_[i] < target_[i];
break;
}
}
if ( unlikely(rc) )
{
if ( opt_debug )
{
bin2hex(hash_str, (unsigned char *)hash, 32);
bin2hex(target_str, (unsigned char *)ptarget, 32);
bin2hex(data_str, (unsigned char *)data, 80);
applog(LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s", thr_id,
data_str,
hash_str,
target_str);
}
work_set_target_ratio( work, hash );
pdata[19] = data[19];
goto out;
}
} while (n < max_nonce && !work_restart[thr_id].restart);
pdata[19] = n;
// do this in hashm7m
out:
mpf_set_prec_raw(magifpi, prec0);
mpf_set_prec_raw(magifpi0, prec0);
mpf_set_prec_raw(mptmp, prec0);
mpf_set_prec_raw(mpt1, prec0);
mpf_set_prec_raw(mpt2, prec0);
mpf_clear(magifpi);
mpf_clear(magifpi0);
mpf_clear(mpten);
mpf_clear(mptmp);
mpf_clear(mpt1);
mpf_clear(mpt2);
mpz_clears(magipi, magisw, product, bns0, bns1, NULL);
*hashes_done = n - first_nonce + 1;
return rc;
}
bool register_m7m_algo( algo_gate_t *gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
init_m7m_ctx();
gate->scanhash = (void*)scanhash_m7m_hash;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
gate->set_target = (void*)&scrypt_set_target;
gate->get_max64 = (void*)&get_max64_0x1ffff;
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
return true;
}