Files
cpuminer-opt-gpu/algo/x17/xevan-4way.c
Jay D Dee a28daca3ce v3.8.1
2018-02-07 16:38:45 -05:00

452 lines
19 KiB
C

#include "xevan-gate.h"
#if defined(XEVAN_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha2-hash-4way.h"
#include "algo/haval/haval-hash-4way.h"
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hashState_echo echo;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
} xevan_4way_ctx_holder;
xevan_4way_ctx_holder xevan_4way_ctx __attribute__ ((aligned (64)));
static __thread blake512_4way_context xevan_blake_4way_mid
__attribute__ ((aligned (64)));
void init_xevan_4way_ctx()
{
blake512_4way_init(&xevan_4way_ctx.blake);
bmw512_4way_init( &xevan_4way_ctx.bmw );
init_groestl( &xevan_4way_ctx.groestl, 64 );
skein512_4way_init(&xevan_4way_ctx.skein);
jh512_4way_init(&xevan_4way_ctx.jh);
keccak512_4way_init(&xevan_4way_ctx.keccak);
luffa_2way_init( &xevan_4way_ctx.luffa, 512 );
cubehashInit( &xevan_4way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &xevan_4way_ctx.shavite );
simd_2way_init( &xevan_4way_ctx.simd, 512 );
init_echo( &xevan_4way_ctx.echo, 512 );
hamsi512_4way_init( &xevan_4way_ctx.hamsi );
sph_fugue512_init( &xevan_4way_ctx.fugue );
shabal512_4way_init( &xevan_4way_ctx.shabal );
sph_whirlpool_init( &xevan_4way_ctx.whirlpool );
sha512_4way_init( &xevan_4way_ctx.sha512 );
haval256_5_4way_init( &xevan_4way_ctx.haval );
};
void xevan_4way_blake512_midstate( const void* input )
{
memcpy( &xevan_blake_4way_mid, &xevan_4way_ctx.blake,
sizeof(xevan_blake_4way_mid) );
blake512_4way( &xevan_blake_4way_mid, input, 64 );
}
void xevan_4way_hash( void *output, const void *input )
{
uint64_t hash0[16] __attribute__ ((aligned (64)));
uint64_t hash1[16] __attribute__ ((aligned (64)));
uint64_t hash2[16] __attribute__ ((aligned (64)));
uint64_t hash3[16] __attribute__ ((aligned (64)));
uint64_t vhash[16<<2] __attribute__ ((aligned (64)));
uint64_t vhash32[16<<2] __attribute__ ((aligned (64)));
const int dataLen = 128;
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
xevan_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &xevan_4way_ctx, sizeof(xevan_4way_ctx) );
// parallel way
memcpy( &ctx.blake, &xevan_blake_4way_mid,
sizeof(xevan_blake_4way_mid) );
blake512_4way( &ctx.blake, input + (midlen<<2), tail );
blake512_4way_close(&ctx.blake, vhash);
memset( &vhash[8<<2], 0, 64<<2 );
bmw512_4way( &ctx.bmw, vhash, dataLen );
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3,
dataLen<<3 );
// Parallel 4way
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way( &ctx.skein, vhash, dataLen );
skein512_4way_close( &ctx.skein, vhash );
jh512_4way( &ctx.jh, vhash, dataLen );
jh512_4way_close( &ctx.jh, vhash );
keccak512_4way( &ctx.keccak, vhash, dataLen );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash0, hash1, dataLen<<3 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, dataLen );
mm256_deinterleave_2x128( hash0, hash1, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash2, hash3, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, dataLen );
mm256_deinterleave_2x128( hash2, hash3, vhash, dataLen<<3 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*) hash2,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*) hash3,
dataLen );
sph_shavite512( &ctx.shavite, hash0, dataLen );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, dataLen );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, dataLen );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, dataLen );
sph_shavite512_close( &ctx.shavite, hash3 );
mm256_interleave_2x128( vhash, hash0, hash1, dataLen<<3 );
simd_2way_update_close( &ctx.simd, vhash, vhash, dataLen<<3 );
mm256_deinterleave_2x128( hash0, hash1, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash2, hash3, dataLen<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, dataLen<<3 );
mm256_deinterleave_2x128( hash2, hash3, vhash, dataLen<<3 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, dataLen<<3 );
// Parallel
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
hamsi512_4way( &ctx.hamsi, vhash, dataLen );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
// Parallel 4way 32 bit
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
shabal512_4way( &ctx.shabal, vhash, dataLen );
shabal512_4way_close( &ctx.shabal, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
// Serial
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
sha512_4way( &ctx.sha512, vhash, dataLen );
sha512_4way_close( &ctx.sha512, vhash );
mm256_reinterleave_4x32( vhash32, vhash, dataLen<<3 );
haval256_5_4way( &ctx.haval, vhash32, dataLen );
haval256_5_4way_close( &ctx.haval, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
memset( &vhash[ 4<<2 ], 0, (dataLen-32) << 2 );
memcpy( &ctx, &xevan_4way_ctx, sizeof(xevan_4way_ctx) );
blake512_4way( &ctx.blake, vhash, dataLen );
blake512_4way_close(&ctx.blake, vhash);
bmw512_4way( &ctx.bmw, vhash, dataLen );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2,
dataLen<<3 );
memcpy( &ctx.groestl, &xevan_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3,
dataLen<<3 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way( &ctx.skein, vhash, dataLen );
skein512_4way_close( &ctx.skein, vhash );
jh512_4way( &ctx.jh, vhash, dataLen );
jh512_4way_close( &ctx.jh, vhash );
keccak512_4way( &ctx.keccak, vhash, dataLen );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash0, hash1, dataLen<<3 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, dataLen );
mm256_deinterleave_2x128( hash0, hash1, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash2, hash3, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, dataLen );
mm256_deinterleave_2x128( hash2, hash3, vhash, dataLen<<3 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*) hash2,
dataLen );
memcpy( &ctx.cube, &xevan_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*) hash3,
dataLen );
sph_shavite512( &ctx.shavite, hash0, dataLen );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, dataLen );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, dataLen );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &xevan_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, dataLen );
sph_shavite512_close( &ctx.shavite, hash3 );
mm256_interleave_2x128( vhash, hash0, hash1, dataLen<<3 );
simd_2way_update_close( &ctx.simd, vhash, vhash, dataLen<<3 );
mm256_deinterleave_2x128( hash0, hash1, vhash, dataLen<<3 );
mm256_interleave_2x128( vhash, hash2, hash3, dataLen<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, dataLen<<3 );
mm256_deinterleave_2x128( hash2, hash3, vhash, dataLen<<3 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, dataLen<<3 );
memcpy( &ctx.echo, &xevan_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, dataLen<<3 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
hamsi512_4way( &ctx.hamsi, vhash, dataLen );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &xevan_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
shabal512_4way( &ctx.shabal, vhash, dataLen );
shabal512_4way_close( &ctx.shabal, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx.whirlpool, &xevan_4way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
sha512_4way( &ctx.sha512, vhash, dataLen );
sha512_4way_close( &ctx.sha512, vhash );
mm256_reinterleave_4x32( vhash32, vhash, dataLen<<3 );
haval256_5_4way( &ctx.haval, vhash32, dataLen );
haval256_5_4way_close( &ctx.haval, vhash32 );
mm_deinterleave_4x32( output, output+32, output+64, output+96,
vhash32, 256 );
}
int scanhash_xevan_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
uint32_t *noncep1 = vdata + 75;
uint32_t *noncep2 = vdata + 77;
uint32_t *noncep3 = vdata + 79;
if ( opt_benchmark )
ptarget[7] = 0x0cff;
for ( int k=0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
xevan_4way_blake512_midstate( vdata );
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
xevan_4way_hash( hash, vdata );
pdata[19] = n;
if ( ( hash[7] <= Htarg ) && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( ( (hash+8)[7] <= Htarg ) && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( ( (hash+16)[7] <= Htarg ) && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( ( (hash+24)[7] <= Htarg ) && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif