Files
cpuminer-opt-gpu/algo/lyra2/sponge.c
Jay D Dee 9d49e0be7a v3.9.6.2
2019-07-30 10:16:43 -04:00

1139 lines
39 KiB
C

/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <immintrin.h>
#include "sponge.h"
#include "lyra2.h"
/**
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
* typically have their internal state initialized with zeros, Blake2b's G function
* has a fixed point: if the internal state and message are both filled with zeros. the
* resulting permutation will always be a block filled with zeros; this happens because
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
* relying on the IV for avoiding possible fixed points.
*
* @param state The 1024-bit array to be initialized
*/
inline void initState( uint64_t State[/*16*/] )
{
/*
#if defined (__AVX2__)
__m256i* state = (__m256i*)State;
const __m256i zero = m256_zero;
state[0] = zero;
state[1] = zero;
state[2] = m256_const_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state[3] = m256_const_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
#elif defined (__SSE2__)
__m128i* state = (__m128i*)State;
const __m128i zero = m128_zero;
state[0] = zero;
state[1] = zero;
state[2] = zero;
state[3] = zero;
state[4] = m128_const_64( 0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state[5] = m128_const_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL );
state[6] = m128_const_64( 0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
state[7] = m128_const_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL );
#else
//First 512 bis are zeros
memset( State, 0, 64 );
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
State[8] = blake2b_IV[0];
State[9] = blake2b_IV[1];
State[10] = blake2b_IV[2];
State[11] = blake2b_IV[3];
State[12] = blake2b_IV[4];
State[13] = blake2b_IV[5];
State[14] = blake2b_IV[6];
State[15] = blake2b_IV[7];
#endif
*/
}
/**
* Execute Blake2b's G function, with all 12 rounds.
*
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
inline static void blake2bLyra( uint64_t *v )
{
ROUND_LYRA(0);
ROUND_LYRA(1);
ROUND_LYRA(2);
ROUND_LYRA(3);
ROUND_LYRA(4);
ROUND_LYRA(5);
ROUND_LYRA(6);
ROUND_LYRA(7);
ROUND_LYRA(8);
ROUND_LYRA(9);
ROUND_LYRA(10);
ROUND_LYRA(11);
}
/**
* Executes a reduced version of Blake2b's G function with only one round
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
inline static void reducedBlake2bLyra( uint64_t *v )
{
ROUND_LYRA(0);
}
/**
* Performs a squeeze operation, using Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param out Array that will receive the data squeezed
* @param len The number of bytes to be squeezed into the "out" array
*/
inline void squeeze( uint64_t *State, byte *Out, unsigned int len )
{
#if defined (__AVX2__)
const int len_m256i = len / 32;
const int fullBlocks = len_m256i / BLOCK_LEN_M256I;
__m256i* state = (__m256i*)State;
__m256i* out = (__m256i*)Out;
int i;
//Squeezes full blocks
for ( i = 0; i < fullBlocks; i++ )
{
memcpy_256( out, state, BLOCK_LEN_M256I );
LYRA_ROUND_AVX2( state[0], state[1], state[2], state[3] );
out += BLOCK_LEN_M256I;
}
//Squeezes remaining bytes
memcpy_256( out, state, ( len_m256i % BLOCK_LEN_M256I ) );
#elif defined (__SSE2__)
const int len_m128i = len / 16;
const int fullBlocks = len_m128i / BLOCK_LEN_M128I;
__m128i* state = (__m128i*)State;
__m128i* out = (__m128i*)Out;
int i;
//Squeezes full blocks
for ( i = 0; i < fullBlocks; i++ )
{
memcpy_128( out, state, BLOCK_LEN_M128I );
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out += BLOCK_LEN_M128I;
}
//Squeezes remaining bytes
memcpy_128( out, state, ( len_m128i % BLOCK_LEN_M128I ) );
#else
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *out = Out;
int i;
//Squeezes full blocks
for ( i = 0; i < fullBlocks; i++ )
{
memcpy( out, State, BLOCK_LEN_BYTES );
blake2bLyra( State );
out += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy( out, State, (len % BLOCK_LEN_BYTES) );
#endif
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
* of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
*/
inline void absorbBlock( uint64_t *State, const uint64_t *In )
{
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i *in = (__m256i*)In;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
state2 = _mm256_xor_si256( state2, in[2] );
LYRA_12_ROUNDS_AVX2( state0, state1, state2, state3 );
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i* state = (__m128i*)State;
__m128i* in = (__m128i*)In;
state[0] = _mm_xor_si128( state[0], in[0] );
state[1] = _mm_xor_si128( state[1], in[1] );
state[2] = _mm_xor_si128( state[2], in[2] );
state[3] = _mm_xor_si128( state[3], in[3] );
state[4] = _mm_xor_si128( state[4], in[4] );
state[5] = _mm_xor_si128( state[5], in[5] );
//Applies the transformation f to the sponge's state
LYRA_12_ROUNDS_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
#else
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
State[0] ^= In[0];
State[1] ^= In[1];
State[2] ^= In[2];
State[3] ^= In[3];
State[4] ^= In[4];
State[5] ^= In[5];
State[6] ^= In[6];
State[7] ^= In[7];
State[8] ^= In[8];
State[9] ^= In[9];
State[10] ^= In[10];
State[11] ^= In[11];
//Applies the transformation f to the sponge's state
blake2bLyra(State);
#endif
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
* words of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
*/
inline void absorbBlockBlake2Safe( uint64_t *State, const uint64_t *In,
const uint64_t nBlocks, const uint64_t block_len )
{
// XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with
// the IV.
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
const __m256i zero = m256_zero;
state0 = zero;
state1 = zero;
state2 = m256_const_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state3 = m256_const_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
for ( int i = 0; i < nBlocks; i++ )
{
__m256i *in = (__m256i*)In;
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
LYRA_12_ROUNDS_AVX2( state0, state1, state2, state3 );
In += block_len;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i state0, state1, state2, state3, state4, state5, state6, state7;
const __m128i zero = m128_zero;
state0 = zero;
state1 = zero;
state2 = zero;
state3 = zero;
state4 = m128_const_64( 0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state5 = m128_const_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL );
state6 = m128_const_64( 0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
state7 = m128_const_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL );
for ( int i = 0; i < nBlocks; i++ )
{
__m128i* in = (__m128i*)In;
state0 = _mm_xor_si128( state0, in[0] );
state1 = _mm_xor_si128( state1, in[1] );
state2 = _mm_xor_si128( state2, in[2] );
state3 = _mm_xor_si128( state3, in[3] );
//Applies the transformation f to the sponge's state
LYRA_12_ROUNDS_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
In += block_len;
}
_mm_store_si128( (__m128i*)State, state0 );
_mm_store_si128( (__m128i*)State + 1, state1 );
_mm_store_si128( (__m128i*)State + 2, state2 );
_mm_store_si128( (__m128i*)State + 3, state3 );
_mm_store_si128( (__m128i*)State + 4, state4 );
_mm_store_si128( (__m128i*)State + 5, state5 );
_mm_store_si128( (__m128i*)State + 6, state6 );
_mm_store_si128( (__m128i*)State + 7, state7 );
#else
State[0] ^= In[0];
State[1] ^= In[1];
State[2] ^= In[2];
State[3] ^= In[3];
State[4] ^= In[4];
State[5] ^= In[5];
State[6] ^= In[6];
State[7] ^= In[7];
//Applies the transformation f to the sponge's state
blake2bLyra(State);
#endif
}
/**
* Performs a reduced squeeze operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowOut Row to receive the data squeezed
*/
inline void reducedSqueezeRow0( uint64_t* State, uint64_t* rowOut,
uint64_t nCols )
{
int i;
//M[row][C-1-col] = H.reduced_squeeze()
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
out[0] = state0;
out[1] = state1;
out[2] = state2;
//Goes to next block (column) that will receive the squeezed data
out -= BLOCK_LEN_M256I;
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i* state = (__m128i*)State;
__m128i state0 = _mm_load_si128( state );
__m128i state1 = _mm_load_si128( &state[1] );
__m128i state2 = _mm_load_si128( &state[2] );
__m128i state3 = _mm_load_si128( &state[3] );
__m128i state4 = _mm_load_si128( &state[4] );
__m128i state5 = _mm_load_si128( &state[5] );
__m128i state6 = _mm_load_si128( &state[6] );
__m128i state7 = _mm_load_si128( &state[7] );
__m128i* out = (__m128i*)rowOut + ( (nCols-1) * BLOCK_LEN_M128I );
for ( i = 0; i < 6; i += 3)
{
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( out - 6, _MM_HINT_T0 );
_mm_prefetch( out - 7, _MM_HINT_T0 );
out[0] = state0;
out[1] = state1;
out[2] = state2;
out[3] = state3;
out[4] = state4;
out[5] = state5;
//Goes to next block (column) that will receive the squeezed data
out -= BLOCK_LEN_M128I;
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
}
_mm_store_si128( state, state0 );
_mm_store_si128( &state[1], state1 );
_mm_store_si128( &state[2], state2 );
_mm_store_si128( &state[3], state3 );
_mm_store_si128( &state[4], state4 );
_mm_store_si128( &state[5], state5 );
_mm_store_si128( &state[6], state6 );
_mm_store_si128( &state[7], state7 );
#else
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
for ( i = 0; i < nCols; i++ )
{
ptrWord[0] = State[0];
ptrWord[1] = State[1];
ptrWord[2] = State[2];
ptrWord[3] = State[3];
ptrWord[4] = State[4];
ptrWord[5] = State[5];
ptrWord[6] = State[6];
ptrWord[7] = State[7];
ptrWord[8] = State[8];
ptrWord[9] = State[9];
ptrWord[10] = State[10];
ptrWord[11] = State[11];
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra( State);
}
#endif
}
/**
* Performs a reduced duplex operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowIn Row to feed the sponge
* @param rowOut Row to receive the sponge's output
*/
inline void reducedDuplexRow1( uint64_t *State, uint64_t *rowIn,
uint64_t *rowOut, uint64_t nCols )
{
int i;
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
state2 = _mm256_xor_si256( state2, in[2] );
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
out[0] = _mm256_xor_si256( state0, in[0] );
out[1] = _mm256_xor_si256( state1, in[1] );
out[2] = _mm256_xor_si256( state2, in[2] );
//Input: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i* state = (__m128i*)State;
__m128i state0 = _mm_load_si128( state );
__m128i state1 = _mm_load_si128( &state[1] );
__m128i state2 = _mm_load_si128( &state[2] );
__m128i state3 = _mm_load_si128( &state[3] );
__m128i state4 = _mm_load_si128( &state[4] );
__m128i state5 = _mm_load_si128( &state[5] );
__m128i state6 = _mm_load_si128( &state[6] );
__m128i state7 = _mm_load_si128( &state[7] );
__m128i* in = (__m128i*)rowIn;
__m128i* out = (__m128i*)rowOut + ( (nCols-1) * BLOCK_LEN_M128I );
for ( i = 0; i < 6; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in - 6, _MM_HINT_T0 );
_mm_prefetch( in - 7, _MM_HINT_T0 );
_mm_prefetch( out - 6, _MM_HINT_T0 );
_mm_prefetch( out - 7, _MM_HINT_T0 );
state0 = _mm_xor_si128( state0, in[0] );
state1 = _mm_xor_si128( state1, in[1] );
state2 = _mm_xor_si128( state2, in[2] );
state3 = _mm_xor_si128( state3, in[3] );
state4 = _mm_xor_si128( state4, in[4] );
state5 = _mm_xor_si128( state5, in[5] );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
out[0] = _mm_xor_si128( state0, in[0] );
out[1] = _mm_xor_si128( state1, in[1] );
out[2] = _mm_xor_si128( state2, in[2] );
out[3] = _mm_xor_si128( state3, in[3] );
out[4] = _mm_xor_si128( state4, in[4] );
out[5] = _mm_xor_si128( state5, in[5] );
//Input: next column (i.e., next block in sequence)
in += BLOCK_LEN_M128I;
//Output: goes to previous column
out -= BLOCK_LEN_M128I;
}
_mm_store_si128( state, state0 );
_mm_store_si128( &state[1], state1 );
_mm_store_si128( &state[2], state2 );
_mm_store_si128( &state[3], state3 );
_mm_store_si128( &state[4], state4 );
_mm_store_si128( &state[5], state5 );
_mm_store_si128( &state[6], state6 );
_mm_store_si128( &state[7], state7 );
#else
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev][col]"
State[0] ^= (ptrWordIn[0]);
State[1] ^= (ptrWordIn[1]);
State[2] ^= (ptrWordIn[2]);
State[3] ^= (ptrWordIn[3]);
State[4] ^= (ptrWordIn[4]);
State[5] ^= (ptrWordIn[5]);
State[6] ^= (ptrWordIn[6]);
State[7] ^= (ptrWordIn[7]);
State[8] ^= (ptrWordIn[8]);
State[9] ^= (ptrWordIn[9]);
State[10] ^= (ptrWordIn[10]);
State[11] ^= (ptrWordIn[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra( State );
//M[row][C-1-col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ State[0];
ptrWordOut[1] = ptrWordIn[1] ^ State[1];
ptrWordOut[2] = ptrWordIn[2] ^ State[2];
ptrWordOut[3] = ptrWordIn[3] ^ State[3];
ptrWordOut[4] = ptrWordIn[4] ^ State[4];
ptrWordOut[5] = ptrWordIn[5] ^ State[5];
ptrWordOut[6] = ptrWordIn[6] ^ State[6];
ptrWordOut[7] = ptrWordIn[7] ^ State[7];
ptrWordOut[8] = ptrWordIn[8] ^ State[8];
ptrWordOut[9] = ptrWordIn[9] ^ State[9];
ptrWordOut[10] = ptrWordIn[10] ^ State[10];
ptrWordOut[11] = ptrWordIn[11] ^ State[11];
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
#endif
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left and N_COLS is a system parameter.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
inline void reducedDuplexRowSetup( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut, uint64_t *rowOut,
uint64_t nCols )
{
int i;
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* inout = (__m256i*)rowInOut;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
__m256i t0, t1, t2;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( inout + 9, _MM_HINT_T0 );
_mm_prefetch( inout + 11, _MM_HINT_T0 );
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
state0 = _mm256_xor_si256( state0,
_mm256_add_epi64( in[0], inout[0] ) );
state1 = _mm256_xor_si256( state1,
_mm256_add_epi64( in[1], inout[1] ) );
state2 = _mm256_xor_si256( state2,
_mm256_add_epi64( in[2], inout[2] ) );
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
out[0] = _mm256_xor_si256( state0, in[0] );
out[1] = _mm256_xor_si256( state1, in[1] );
out[2] = _mm256_xor_si256( state2, in[2] );
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm256_permute4x64_epi64( state0, 0x93 );
t1 = _mm256_permute4x64_epi64( state1, 0x93 );
t2 = _mm256_permute4x64_epi64( state2, 0x93 );
inout[0] = _mm256_xor_si256( inout[0],
_mm256_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm256_xor_si256( inout[1],
_mm256_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm256_xor_si256( inout[2],
_mm256_blend_epi32( t2, t1, 0x03 ) );
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i* in = (__m128i*)rowIn;
__m128i* inout = (__m128i*)rowInOut;
__m128i* out = (__m128i*)rowOut + ( (nCols-1) * BLOCK_LEN_M128I );
for ( i = 0; i < 6; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
__m128i* state = (__m128i*)State;
// For the last round in this function not optimized for AVX
// uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
// uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
// uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 6, _MM_HINT_T0 );
_mm_prefetch( in + 7, _MM_HINT_T0 );
_mm_prefetch( inout + 6, _MM_HINT_T0 );
_mm_prefetch( inout + 7, _MM_HINT_T0 );
_mm_prefetch( out - 6, _MM_HINT_T0 );
_mm_prefetch( out - 7, _MM_HINT_T0 );
state[0] = _mm_xor_si128( state[0],
_mm_add_epi64( in[0], inout[0] ) );
state[1] = _mm_xor_si128( state[1],
_mm_add_epi64( in[1], inout[1] ) );
state[2] = _mm_xor_si128( state[2],
_mm_add_epi64( in[2], inout[2] ) );
state[3] = _mm_xor_si128( state[3],
_mm_add_epi64( in[3], inout[3] ) );
state[4] = _mm_xor_si128( state[4],
_mm_add_epi64( in[4], inout[4] ) );
state[5] = _mm_xor_si128( state[5],
_mm_add_epi64( in[5], inout[5] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out[0] = _mm_xor_si128( state[0], in[0] );
out[1] = _mm_xor_si128( state[1], in[1] );
out[2] = _mm_xor_si128( state[2], in[2] );
out[3] = _mm_xor_si128( state[3], in[3] );
out[4] = _mm_xor_si128( state[4], in[4] );
out[5] = _mm_xor_si128( state[5], in[5] );
__m128i t0, t1;
t0 = _mm_srli_si128( state[0], 8 );
t1 = _mm_srli_si128( state[1], 8 );
inout[0] = _mm_xor_si128( inout[0],
_mm_or_si128( _mm_slli_si128( state[0], 8 ),
_mm_srli_si128( state[5], 8 ) ) );
inout[1] = _mm_xor_si128( inout[1],
_mm_or_si128( _mm_slli_si128( state[1], 8 ), t0 ) );
t0 = _mm_srli_si128( state[2], 8 );
inout[2] = _mm_xor_si128( inout[2],
_mm_or_si128( _mm_slli_si128( state[2], 8 ), t1 ) );
t1 = _mm_srli_si128( state[3], 8 );
inout[3] = _mm_xor_si128( inout[3],
_mm_or_si128( _mm_slli_si128( state[3], 8 ), t0 ) );
t0 = _mm_srli_si128( state[4], 8 );
inout[4] = _mm_xor_si128( inout[4],
_mm_or_si128( _mm_slli_si128( state[4], 8 ), t1 ) );
inout[5] = _mm_xor_si128( inout[5],
_mm_or_si128( _mm_slli_si128( state[5], 8 ), t0 ) );
/*
ptrWordInOut[0] ^= State[11];
ptrWordInOut[1] ^= State[0];
ptrWordInOut[2] ^= State[1];
ptrWordInOut[3] ^= State[2];
ptrWordInOut[4] ^= State[3];
ptrWordInOut[5] ^= State[4];
ptrWordInOut[6] ^= State[5];
ptrWordInOut[7] ^= State[6];
ptrWordInOut[8] ^= State[7];
ptrWordInOut[9] ^= State[8];
ptrWordInOut[10] ^= State[9];
ptrWordInOut[11] ^= State[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
*/
inout += BLOCK_LEN_M128I;
in += BLOCK_LEN_M128I;
out -= BLOCK_LEN_M128I;
}
#else
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
State[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
State[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
State[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
State[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
State[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
State[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
State[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
State[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
State[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
State[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
State[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
State[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra( State );
//M[row][col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ State[0];
ptrWordOut[1] = ptrWordIn[1] ^ State[1];
ptrWordOut[2] = ptrWordIn[2] ^ State[2];
ptrWordOut[3] = ptrWordIn[3] ^ State[3];
ptrWordOut[4] = ptrWordIn[4] ^ State[4];
ptrWordOut[5] = ptrWordIn[5] ^ State[5];
ptrWordOut[6] = ptrWordIn[6] ^ State[6];
ptrWordOut[7] = ptrWordIn[7] ^ State[7];
ptrWordOut[8] = ptrWordIn[8] ^ State[8];
ptrWordOut[9] = ptrWordIn[9] ^ State[9];
ptrWordOut[10] = ptrWordIn[10] ^ State[10];
ptrWordOut[11] = ptrWordIn[11] ^ State[11];
ptrWordInOut[0] ^= State[11];
ptrWordInOut[1] ^= State[0];
ptrWordInOut[2] ^= State[1];
ptrWordInOut[3] ^= State[2];
ptrWordInOut[4] ^= State[3];
ptrWordInOut[5] ^= State[4];
ptrWordInOut[6] ^= State[5];
ptrWordInOut[7] ^= State[6];
ptrWordInOut[8] ^= State[7];
ptrWordInOut[9] ^= State[8];
ptrWordInOut[10] ^= State[9];
ptrWordInOut[11] ^= State[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
#endif
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
inline void reducedDuplexRow( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut, uint64_t *rowOut,
uint64_t nCols )
{
int i;
#if defined __AVX2__
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* inout = (__m256i*)rowInOut;
__m256i* out = (__m256i*)rowOut;
__m256i t0, t1, t2;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out + i, _MM_HINT_T0 );
_mm_prefetch( out + i + 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( out + 9, _MM_HINT_T0 );
_mm_prefetch( out + 11, _MM_HINT_T0 );
_mm_prefetch( inout + 9, _MM_HINT_T0 );
_mm_prefetch( inout + 11, _MM_HINT_T0 );
//Absorbing "M[prev] [+] M[row*]"
state0 = _mm256_xor_si256( state0,
_mm256_add_epi64( in[0], inout[0] ) );
state1 = _mm256_xor_si256( state1,
_mm256_add_epi64( in[1], inout[1] ) );
state2 = _mm256_xor_si256( state2,
_mm256_add_epi64( in[2], inout[2] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm256_xor_si256( out[0], state0 );
out[1] = _mm256_xor_si256( out[1], state1 );
out[2] = _mm256_xor_si256( out[2], state2 );
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm256_permute4x64_epi64( state0, 0x93 );
t1 = _mm256_permute4x64_epi64( state1, 0x93 );
t2 = _mm256_permute4x64_epi64( state2, 0x93 );
inout[0] = _mm256_xor_si256( inout[0],
_mm256_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm256_xor_si256( inout[1],
_mm256_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm256_xor_si256( inout[2],
_mm256_blend_epi32( t2, t1, 0x03 ) );
//Goes to next block
in += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__)
__m128i* state = (__m128i*)State;
__m128i* in = (__m128i*)rowIn;
__m128i* inout = (__m128i*)rowInOut;
__m128i* out = (__m128i*)rowOut;
for ( i = 0; i < 6; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
}
// for the last round in this function that isn't optimized for AVX
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
for ( i = 0; i < nCols; i++)
{
_mm_prefetch( in + 6, _MM_HINT_T0 );
_mm_prefetch( in + 7, _MM_HINT_T0 );
_mm_prefetch( out - 6, _MM_HINT_T0 );
_mm_prefetch( out - 7, _MM_HINT_T0 );
_mm_prefetch( inout + 6, _MM_HINT_T0 );
_mm_prefetch( inout + 7, _MM_HINT_T0 );
state[0] = _mm_xor_si128( state[0],
_mm_add_epi64( in[0], inout[0] ) );
state[1] = _mm_xor_si128( state[1],
_mm_add_epi64( in[1],
inout[1] ) );
state[2] = _mm_xor_si128( state[2],
_mm_add_epi64( in[2],
inout[2] ) );
state[3] = _mm_xor_si128( state[3],
_mm_add_epi64( in[3],
inout[3] ) );
state[4] = _mm_xor_si128( state[4],
_mm_add_epi64( in[4],
inout[4] ) );
state[5] = _mm_xor_si128( state[5],
_mm_add_epi64( in[5],
inout[5] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out[0] = _mm_xor_si128( state[0], out[0] );
out[1] = _mm_xor_si128( state[1], out[1] );
out[2] = _mm_xor_si128( state[2], out[2] );
out[3] = _mm_xor_si128( state[3], out[3] );
out[4] = _mm_xor_si128( state[4], out[4] );
out[5] = _mm_xor_si128( state[5], out[5] );
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= State[11];
ptrWordInOut[1] ^= State[0];
ptrWordInOut[2] ^= State[1];
ptrWordInOut[3] ^= State[2];
ptrWordInOut[4] ^= State[3];
ptrWordInOut[5] ^= State[4];
ptrWordInOut[6] ^= State[5];
ptrWordInOut[7] ^= State[6];
ptrWordInOut[8] ^= State[7];
ptrWordInOut[9] ^= State[8];
ptrWordInOut[10] ^= State[9];
ptrWordInOut[11] ^= State[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
out += BLOCK_LEN_M128I;
inout += BLOCK_LEN_M128I;
in += BLOCK_LEN_M128I;
}
#else
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
for ( i = 0; i < nCols; i++)
{
//Absorbing "M[prev] [+] M[row*]"
State[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
State[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
State[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
State[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
State[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
State[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
State[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
State[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
State[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
State[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
State[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
State[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra( State);
ptrWordOut[0] ^= State[0];
ptrWordOut[1] ^= State[1];
ptrWordOut[2] ^= State[2];
ptrWordOut[3] ^= State[3];
ptrWordOut[4] ^= State[4];
ptrWordOut[5] ^= State[5];
ptrWordOut[6] ^= State[6];
ptrWordOut[7] ^= State[7];
ptrWordOut[8] ^= State[8];
ptrWordOut[9] ^= State[9];
ptrWordOut[10] ^= State[10];
ptrWordOut[11] ^= State[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= State[11];
ptrWordInOut[1] ^= State[0];
ptrWordInOut[2] ^= State[1];
ptrWordInOut[3] ^= State[2];
ptrWordInOut[4] ^= State[3];
ptrWordInOut[5] ^= State[4];
ptrWordInOut[6] ^= State[5];
ptrWordInOut[7] ^= State[6];
ptrWordInOut[8] ^= State[7];
ptrWordInOut[9] ^= State[8];
ptrWordInOut[10] ^= State[9];
ptrWordInOut[11] ^= State[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
#endif
}