Files
cpuminer-opt-gpu/algo/sha/sha256t.c
Jay D Dee 92b3733925 v3.17.0
2021-07-15 20:30:44 -04:00

211 lines
6.4 KiB
C

#include "sha256t-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
//#include "algo/sha/sph_sha2.h"
#include "sha256-hash-opt.h"
#if defined(__SHA__)
// Only used on CPUs with SHA
/*
static __thread sph_sha256_context sha256t_ctx __attribute__ ((aligned (64)));
void sha256t_midstate( const void* input )
{
sph_sha256_init( &sha256t_ctx );
sph_sha256( &sha256t_ctx, input, 64 );
}
int sha256t_hash( void* output, const void* input )
{
uint32_t _ALIGN(64) hash[16];
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
sph_sha256_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sha256t_ctx, sizeof sha256t_ctx );
sph_sha256( &ctx, input + midlen, tail );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, output );
return 1;
}
*/
/*
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block[16] __attribute__ ((aligned (64)));
uint32_t hash32[8] __attribute__ ((aligned (32)));
uint32_t initstate[8] __attribute__ ((aligned (32)));
uint32_t midstate[8] __attribute__ ((aligned (32)));
// uint32_t edata[20] __attribute__((aligned(64)));
// uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
__m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// mm128_bswap32_80( edata, pdata );
// sha256t_midstate( edata );
// initialize state
initstate[0] = 0x6A09E667;
initstate[1] = 0xBB67AE85;
initstate[2] = 0x3C6EF372;
initstate[3] = 0xA54FF53A;
initstate[4] = 0x510E527F;
initstate[5] = 0x9B05688C;
initstate[6] = 0x1F83D9AB;
initstate[7] = 0x5BE0CD19;
// hash first 64 bytes of data
sha256_opt_transform( midstate, pdata, initstate );
do
{
// 1. final 16 bytes of data, with padding
memcpy( block, pdata + 16, 16 );
block[ 4] = 0x80000000;
memset( block + 5, 0, 40 );
block[15] = 80*8; // bit count
sha256_opt_transform( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy( block, hash32, 32 );
block[ 8] = 0x80000000;
memset( block + 9, 0, 24 );
block[15] = 32*8; // bit count
sha256_opt_transform( hash32, block, initstate );
// 3. 32 byte hash from 2.
memcpy( block, hash32, 32 );
sha256_opt_transform( hash32, block, initstate );
// byte swap final hash for testing
casti_m128i( hash32, 0 ) =
_mm_shuffle_epi8( casti_m128i( hash32, 0 ), shuf_bswap32 );
casti_m128i( hash32, 1 ) =
_mm_shuffle_epi8( casti_m128i( hash32, 1 ), shuf_bswap32 );
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
submit_solution( work, hash32, mythr );
n++;
pdata[19] = n;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
*/
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block0[16] __attribute__ ((aligned (64)));
uint32_t block1[16] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (32)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t initstate[8] __attribute__ ((aligned (32)));
uint32_t midstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
__m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// initialize state
initstate[0] = 0x6A09E667;
initstate[1] = 0xBB67AE85;
initstate[2] = 0x3C6EF372;
initstate[3] = 0xA54FF53A;
initstate[4] = 0x510E527F;
initstate[5] = 0x9B05688C;
initstate[6] = 0x1F83D9AB;
initstate[7] = 0x5BE0CD19;
// hash first 64 bytes of data
sha256_opt_transform( midstate, pdata, initstate );
do
{
// 1. final 16 bytes of data, with padding
memcpy( block0, pdata + 16, 16 );
memcpy( block1, pdata + 16, 16 );
block0[ 3] = n;
block1[ 3] = n+1;
block0[ 4] = block1[ 4] = 0x80000000;
memset( block0 + 5, 0, 40 );
memset( block1 + 5, 0, 40 );
block0[15] = block1[15] = 80*8; // bit count
sha256_ni2way_transform( hash0, hash1, block0, block1, midstate, midstate );
// 2. 32 byte hash from 1.
memcpy( block0, hash0, 32 );
memcpy( block1, hash1, 32 );
block0[ 8] = block1[ 8] = 0x80000000;
memset( block0 + 9, 0, 24 );
memset( block1 + 9, 0, 24 );
block0[15] = block1[15] = 32*8; // bit count
sha256_ni2way_transform( hash0, hash1, block0, block1, initstate, initstate );
// 3. 32 byte hash from 2.
memcpy( block0, hash0, 32 );
memcpy( block1, hash1, 32 );
sha256_ni2way_transform( hash0, hash1, block0, block1, initstate, initstate );
// byte swap final hash for testing
casti_m128i( hash0, 0 ) =
_mm_shuffle_epi8( casti_m128i( hash0, 0 ), shuf_bswap32 );
casti_m128i( hash0, 1 ) =
_mm_shuffle_epi8( casti_m128i( hash0, 1 ), shuf_bswap32 );
casti_m128i( hash1, 0 ) =
_mm_shuffle_epi8( casti_m128i( hash1, 0 ), shuf_bswap32 );
casti_m128i( hash1, 1 ) =
_mm_shuffle_epi8( casti_m128i( hash1, 1 ), shuf_bswap32 );
if ( unlikely( valid_hash( hash0, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hash0, mythr );
}
if ( unlikely( valid_hash( hash1, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hash1, mythr );
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif