Files
cpuminer-opt-gpu/simd-utils/simd-512.h
Jay D Dee a52c5eccf7 v3.9.10
2019-11-22 20:29:18 -05:00

578 lines
22 KiB
C

#if !defined(SIMD_512_H__)
#define SIMD_512_H__ 1
////////////////////////////////////////////////////////////////////////
//
// AVX-512
//
// The baseline for these utilities is AVX512F, AVX512DQ, AVX512BW
// and AVX512VL, first available in quantity in Skylake-X.
// Some utilities may require additional features available in subsequent
// architectures and are noted.
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// AVX512 intrinsics have a few peculiarities with permutes and shuffles
// that are inconsistent with previous AVX2 implementations.
//
// _mm512_permutex_epi64 only shuffles within 256 bit lanes. Permute
// usually shuffles accross all lanes.
//
// permutexvar has args reversed, index is first arg. Previously all
// permutes and shuffles have the source vector first.
//
// _mm512_permutexvar_epi8 requires AVX512-VBMI, larger elements don't.
// It also performs the same op as _mm512_shuffle_epi8.
//
// _mm512_shuffle_epi8 shuffles accross entire 512 bits. Shuffle usually
// doesn't cross 128 bit lane boundaries.
//////////////////////////////////////////////////////////////
//
// AVX512 512 bit vectors
//
// Other AVX512 extensions that may be required for some functions.
// __AVX512VBMI__ __AVX512VAES__
//
// Experimental, not fully tested.
// Move integer to/from element 0 of vector.
#define mm512_mov64_512( n ) _mm512_castsi128_si512( mm128_mov64_128( n ) )
#define mm512_mov32_512( n ) _mm512_castsi128_si512( mm128_mov32_128( n ) )
#define mm512_mov256_64( a ) mm128_mov128_64( _mm256_castsi512_si128( a ) )
#define mm512_mov256_32( a ) mm128_mov128_32( _mm256_castsi512_si128( a ) )
// Insert and extract integers is a multistage operation.
// Insert integer into __m128i, then insert __m128i to __m256i, finally
// insert __256i into __m512i. Reverse the order for extract.
// Do not use __m512_insert_epi64 or _mm256_insert_epi64 to perform multiple
// inserts.
// Avoid small integers for multiple inserts.
// Shortcuts:
// Use castsi to reference the low bits of a vector or sub-vector. (free)
// Use mov to insert integer into low bits of vector or sub-vector. (cheap)
// Use _mm_insert only to reference the high bits of __m128i. (expensive)
// Sequence instructions to minimize data dependencies.
// Use const or const1 only when integer is either immediate or known to be in
// a GP register. Use set/set1 when data needs to be loaded from memory or
// cache.
// Concatenate two 256 bit vectors into one 512 bit vector {hi, lo}
#define mm512_concat_256( hi, lo ) \
_mm512_inserti64x4( _mm512_castsi256_si512( lo ), hi, 1 )
// Equivalent of set, assign 64 bit integers to respective 64 bit elements.
static inline __m512i m512_const_64( const uint64_t i7, const uint64_t i6,
const uint64_t i5, const uint64_t i4,
const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
__m256i hi, lo;
__m128i hi1, lo1;
lo = mm256_mov64_256( i0 );
lo1 = mm128_mov64_128( i2 );
hi = mm256_mov64_256( i4 );
hi1 = mm128_mov64_128( i6 );
lo = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128( lo ), i1, 1 ) );
lo1 = _mm_insert_epi64( lo1, i3, 1 );
hi = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128( hi ), i5, 1 ) );
hi1 = _mm_insert_epi64( hi1, i7, 1 );
lo = _mm256_inserti128_si256( lo, lo1, 1 );
hi = _mm256_inserti128_si256( hi, hi1, 1 );
return mm512_concat_256( hi, lo );
}
// Equivalent of set4, broadcast 256 bits in groups of four 64 bit constants
// to all 256 bit lanes: {i3,i2,i1,i0,i3,i2,i1,i0,i3,i2,i1,i0,i3,i2,i1,i0}.
static inline __m512i mm512_const4_64( const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
__m256i lo = mm256_mov64_256( i0 );
__m128i hi = mm128_mov64_128( i2 );
lo = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128(
lo ), i1, 1 ) );
hi = _mm_insert_epi64( hi, i3, 1 );
return _mm512_permutex_epi64( _mm512_castsi256_si512(
_mm256_inserti128_si256( lo, hi, 1 ) ), 0xe4 );
}
// Broadcast 128 bits in pairs of 64 bit constants {i1. i0} to all
// 128 bit lanes.
#define mm512_const2_64( i1, i0 ) \
_mm512_permutex_epi64( _mm512_castsi128_si512( \
m128_const_64( i1, i0 ) ), 0x44 )
// Equivalent of set1, broadcast 64 bit constant to all 64 bit elements.
#define m512_const1_64( i ) _mm512_broadcastq_epi64( mm128_mov64_128( i ) )
#define m512_const1_32( i ) _mm512_broadcastd_epi32( mm128_mov32_128( i ) )
#define m512_const1_16( i ) _mm512_broadcastw_epi16( mm128_mov32_128( i ) )
#define m512_const1_8 ( i ) _mm512_broadcastb_epi8 ( mm128_mov32_128( i ) )
//
// Pseudo constants.
// _mm512_setzero_si512 uses xor instruction. If needed frequently
// in a function is it better to define a register variable (const?)
// initialized to zero.
#define m512_zero _mm512_setzero_si512()
#define m512_one_512 mm512_mov64_512( 1 )
#define m512_one_256 _mm512_broadcast_i64x4 ( mm256_mov64_256( 1 ) )
#define m512_one_128 _mm512_broadcast_i64x2 ( mm128_mov64_128( 1 ) )
#define m512_one_64 _mm512_broadcastq_epi64( mm128_mov64_128( 1 ) )
#define m512_one_32 _mm512_broadcastd_epi32( mm128_mov64_128( 1 ) )
#define m512_one_16 _mm512_broadcastw_epi16( mm128_mov64_128( 1 ) )
#define m512_one_8 _mm512_broadcastb_epi8 ( mm128_mov64_128( 1 ) )
#define m512_neg1 mm512_const1_64( 0xffffffffffffffff )
/*
// EVEX vcmpeqq returns a bit mask instead of a vector
static inline __m512i mm512_neg1_fn()
{
__m512i a;
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(a) );
return a;
}
#define m512_neg1 mm512_neg1_fn()
*/
//
// Basic operations without SIMD equivalent
#define mm512_not( x ) _mm512_xor_si512( x, m512_neg1 )
#define mm512_negate_64( x ) _mm512_sub_epi64( m512_zero, x )
#define mm512_negate_32( x ) _mm512_sub_epi32( m512_zero, x )
#define mm512_negate_16( x ) _mm512_sub_epi16( m512_zero, x )
//
// Pointer casting
// p = any aligned pointer
// i = scaled array index
// o = scaled address offset
// returns p as pointer to vector
#define castp_m512i(p) ((__m512i*)(p))
// returns *p as vector value
#define cast_m512i(p) (*((__m512i*)(p)))
// returns p[i] as vector value
#define casti_m512i(p,i) (((__m512i*)(p))[(i)])
// returns p+o as pointer to vector
#define casto_m512i(p,o) (((__m512i*)(p))+(o))
// Sum 4 values, fewer dependencies than sequential addition.
#define mm512_add4_64( a, b, c, d ) \
_mm512_add_epi64( _mm512_add_epi64( a, b ), _mm512_add_epi64( c, d ) )
#define mm512_add4_32( a, b, c, d ) \
_mm512_add_epi32( _mm512_add_epi32( a, b ), _mm512_add_epi32( c, d ) )
#define mm512_add4_16( a, b, c, d ) \
_mm512_add_epi16( _mm512_add_epi16( a, b ), _mm512_add_epi16( c, d ) )
#define mm512_add4_8( a, b, c, d ) \
_mm512_add_epi8( _mm512_add_epi8( a, b ), _mm512_add_epi8( c, d ) )
#define mm512_xor4( a, b, c, d ) \
_mm512_xor_si512( _mm512_xor_si256( a, b ), _mm512_xor_si256( c, d ) )
// Horizontal vector testing
// Returns bit mask
#define mm512_allbits0( a ) _mm512_cmpeq_epi64_mask( a, m512_zero )
#define mm512_allbits1( a ) _mm512_cmpeq_epi64_mask( a, m512_neg1 )
#define mm512_anybits0( a ) _mm512_cmpneq_epi64_mask( a, m512_neg1 )
#define mm512_anybits1( a ) _mm512_cmpneq_epi64_mask( a, m512_zero )
//
// Bit rotations.
// AVX512F has built-in fixed and variable bit rotation for 64 & 32 bit
// elements and can be called directly. But they only accept immediate 8
// for control arg.
//
// _mm512_rol_epi64, _mm512_ror_epi64, _mm512_rol_epi32, _mm512_ror_epi32
// _mm512_rolv_epi64, _mm512_rorv_epi64, _mm512_rolv_epi32, _mm512_rorv_epi32
//
#define mm512_ror_var_64( v, c ) \
_mm512_or_si512( _mm512_srli_epi64( v, c ), \
_mm512_slli_epi64( v, 64-(c) ) )
#define mm512_rol_var_64( v, c ) \
_mm512_or_si512( _mm512_slli_epi64( v, c ), \
_mm512_srli_epi64( v, 64-(c) ) )
#define mm512_ror_var_32( v, c ) \
_mm512_or_si512( _mm512_srli_epi32( v, c ), \
_mm512_slli_epi32( v, 32-(c) ) )
#define mm512_rol_var_32( v, c ) \
_mm512_or_si512( _mm512_slli_epi32( v, c ), \
_mm512_srli_epi32( v, 32-(c) ) )
// Here is a fixed bit rotate for 16 bit elements:
#define mm512_ror_16( v, c ) \
_mm512_or_si512( _mm512_srli_epi16( v, c ), \
_mm512_slli_epi16( v, 16-(c) )
#define mm512_rol_16( v, c ) \
_mm512_or_si512( _mm512_slli_epi16( v, c ), \
_mm512_srli_epi16( v, 16-(c) )
// Rotations using a vector control index are very slow due to overhead
// to generate the index vector. Repeated rotations using the same index
// are better handled by the calling function where the index only needs
// to be generated once then reused very efficiently.
// Permutes and shuffles using an immediate index are significantly faster.
//
// Swap bytes in vector elements, vectorized endian conversion.
#define mm512_bswap_64( v ) \
_mm512_shuffle_epi8( v, m512_const2_64( \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) )
#define mm512_bswap_32( v ) \
_mm512_shuffle_epi8( v, m512_const2_64( \
0x0c0d0e0f08090a0b, 0x0405060700010203 ) )
#define mm512_bswap_16( v ) \
_mm512_shuffle_epi8( v, m512_const2_64( \
0x0e0f0c0d0a0b0809, 0x0607040502030001 ) )
// Source and destination are pointers, may point to same memory.
// 8 lanes of 64 bytes each
#define mm512_block_bswap_64( d, s ) do \
{ \
__m512i ctl = m512_const2_64( 0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
// 16 lanes of 32 bytes each
#define mm512_block_bswap_32( d, s ) do \
{ \
__m512i ctl = m512_const2_64( 0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
//
// Rotate elements in 512 bit vector.
#define mm512_swap_256( v ) _mm512_alignr_epi64( v, v, 4 )
#define mm512_ror_1x128( v ) _mm512_alignr_epi64( v, v, 2 )
#define mm512_rol_1x128( v ) _mm512_alignr_epi64( v, v, 6 )
#define mm512_ror_1x64( v ) _mm512_alignr_epi64( v, v, 1 )
#define mm512_rol_1x64( v ) _mm512_alignr_epi64( v, v, 7 )
#define mm512_ror_1x32( v ) _mm512_alignr_epi32( v, v, 1 )
#define mm512_rol_1x32( v ) _mm512_alignr_epi32( v, v, 15 )
// Generic for odd rotations
#define mm512_ror_x64( v, n ) _mm512_alignr_epi64( v, v, n )
#define mm512_rol_x64( v, n ) _mm512_alignr_epi64( v, v, 8-n )
#define mm512_ror_x32( v, n ) _mm512_alignr_epi32( v, v, n )
#define mm512_rol_x32( v, n ) _mm512_alignr_epi32( v, v, 16-n )
#define mm512_ror_1x16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x0000001F001E001D, 0x001C001B001A0019, \
0X0018001700160015, 0X0014001300120011, \
0X0010000F000E000D, 0X000C000B000A0009, \
0X0008000700060005, 0X0004000300020001 ), v )
#define mm512_rol_1x16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001E001D001C001B, 0x001A001900180017, \
0X0016001500140013, 0X001200110010000F, \
0X000E000D000C000B, 0X000A000900080007, \
0X0006000500040003, 0X000200010000001F ), v )
#define mm512_ror_1x8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x003F3E3D3C3B3A39, 0x3837363534333231, \
0x302F2E2D2C2B2A29, 0x2827262524232221, \
0x201F1E1D1C1B1A19. 0x1817161514131211, \
0x100F0E0D0C0B0A09, 0x0807060504030201 ) )
#define mm512_rol_1x8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231302F. \
0x2E2D2C2B2A292827, 0x262524232221201F, \
0x1E1D1C1B1A191817, 0x161514131211100F, \
0x0E0D0C0B0A090807, 0x060504030201003F ) )
// Invert vector: {3,2,1,0} -> {0,1,2,3}
#define mm512_invert_256( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 3,2,1,0,7,6,5,4 ) )
#define mm512_invert_128( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 1,0,3,2,5,4,7,6 ) )
#define mm512_invert_64( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 0,1,2,3,4,5,6,7 ) )
#define mm512_invert_32( v ) \
_mm512_permutexvar_epi32( m512_const_64( \
0x0000000000000001,0x0000000200000003, \
0x0000000400000005,0x0000000600000007, \
0x0000000800000009,0x0000000a0000000b, \
0x0000000c0000000d,0x0000000e0000000f ), v )
#define mm512_invert_16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x0000000100020003, 0x0004000500060007, \
0x00080009000A000B, 0x000C000D000E000F, \
0x0010001100120013, 0x0014001500160017, \
0x00180019001A001B, 0x001C001D001E001F ), v )
#define mm512_invert_8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x0001020304050607, 0x08090A0B0C0D0E0F, \
0x1011121314151617, 0x18191A1B1C1D1E1F, \
0x2021222324252627, 0x28292A2B2C2D2E2F, \
0x3031323334353637, 0x38393A3B3C3D3E3F ) )
//
// Rotate elements within 256 bit lanes of 512 bit vector.
// Swap hi & lo 128 bits in each 256 bit lane
#define mm512_swap128_256( v ) _mm512_permutex_epi64( v, 0x4e )
// Rotate 256 bit lanes by one 64 bit element
#define mm512_ror1x64_256( v ) _mm512_permutex_epi64( v, 0x39 )
#define mm512_rol1x64_256( v ) _mm512_permutex_epi64( v, 0x93 )
// Rotate 256 bit lanes by one 32 bit element
#define mm512_ror1x32_256( v ) \
_mm512_permutexvar_epi32( m512_const4_64( \
0x0000000000000007, 0x0000000600000005, \
0x0000000400000003, 0x0000000200000001 ), v )
#define mm512_rol1x32_256( v ) \
_mm512_permutexvar_epi32( m512_const4_64( \
0x0000000600000005, 0x0000000400000003, \
0x0000000200000001, 0x0000000000000007 ), v )
#define mm512_ror1x16_256( v ) \
_mm512_permutexvar_epi16( m512_const4_64( \
0x0000000f000e000d, 0x000c000b000a0009, \
0x0008000700060005, 0x0004000300020001 ), v )
#define mm512_rol1x16_256( v ) \
_mm512_permutexvar_epi16( m512_const4_64( \
0x000e000d000c000b, 0x000a000900080007, \
0x0006000500040003, 0x000200010000000f ), v )
#define mm512_ror1x8_256( v ) \
_mm512_shuffle_epi8( v, m512_const4_64( \
0x001f1e1d1c1b1a19, 0x1817161514131211, \
0x100f0e0d0c0b0a09, 0x0807060504030201 ), v )
#define mm512_rol1x8_256( v ) \
_mm512_shuffle_epi8( v, m512_const4_64( \
0x1e1d1c1b1a191817, 0x161514131211100f, \
0x0e0d0c0b0a090807, 0x060504030201001f ), v )
//
// Rotate elements within 128 bit lanes of 512 bit vector.
// Swap hi & lo 64 bits in each 128 bit lane
#define mm512_swap64_128( v ) _mm512_shuffle_epi32( v, 0x4e )
// Rotate 128 bit lanes by one 32 bit element
#define mm512_ror1x32_128( v ) _mm512_shuffle_epi32( v, 0x39 )
#define mm512_rol1x32_128( v ) _mm512_shuffle_epi32( v, 0x93 )
#define mm512_ror1x16_128( v ) \
_mm512_permutexvar_epi16( m512_const2_64( \
0x0000000700060005, 0x0004000300020001 ), v )
#define mm512_rol1x16_128( v ) \
_mm512_permutexvar_epi16( m512_const2_64( \
0x0006000500040003, 0x0002000100000007 ), v )
#define mm512_ror1x8_128( v ) \
_mm512_shuffle_epi8( v, m512_const2_64( \
0x000f0e0d0c0b0a09, 0x0807060504030201 ) )
#define mm512_rol1x8_128( v ) \
_mm512_shuffle_epi8( v, m512_const2_64( \
0x0e0d0c0b0a090807, 0x060504030201000f ) )
// Rotate 128 bit lanes by c bytes.
#define mm512_bror_128( v, c ) \
_mm512_or_si512( _mm512_bsrli_epi128( v, c ), \
_mm512_bslli_epi128( v, 16-(c) ) )
#define mm512_brol_128( v, c ) \
_mm512_or_si512( _mm512_bslli_epi128( v, c ), \
_mm512_bsrli_epi128( v, 16-(c) ) )
//
// Rotate elements within 64 bit lanes.
// Swap 32 bit elements in each 64 bit lane
#define mm512_swap32_64( v ) _mm512_shuffle_epi32( v, 0xb1 )
// Rotate each 64 bit lane by one 16 bit element.
#define mm512_ror1x16_64( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001c001f001e001d, 0x0018001b001a0019, \
0x0014001700160015, 0x0010001300120011, \
0x000c000f000e000d, 0x0008000b000a0009, \
0x0004000700060005, 0x0000000300020001, v )
#define mm512_rol1x16_64( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001e001d001c001f, 0x001a00190018001b, \
0x0016001500140017, 0x0012001100100013, \
0x000e000d000c000f, 0x000a00090008000b, \
0x0006000500040007, 0x0002000100000003, v )
// Rotate each 64 bit lane by one byte.
#define mm512_ror1x8_64( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x383F3E3D3C3B3A39, 0x3037363534333231, \
0x282F2E2D2C2B2A29, 0x2027262524232221, \
0x181F1E1D1C1B1A19, 0x1017161514131211, \
0x080F0E0D0C0B0A09, 0x0007060504030201 ) )
#define mm512_rol1x8_64( v ) \
_mm512_shuffle( v, m512_const_64( \
0x3E3D3C3B3A39383F, 0x3635343332313037, \
0x2E2D2C2B2A29282F, 0x2625242322212027, \
0x1E1D1C1B1A19181F, 0x1615141312111017, \
0x0E0D0C0B0A09080F, 0x0605040302010007 ) )
//
// Rotate elements within 32 bit lanes.
#define mm512_swap16_32( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001e001f001c001d, 0x001a001b00180019, \
0x0016001700140015, 0x0012001300100011, \
0x000e000f000c000d, 0x000a000b00080009, \
0x0006000700040005, 0x0002000300000001 ), v )
#define mm512_ror1x8_32( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3C3F3E3D383B3A39, 0x3437363530333231, \
0x2C2F2E2D282B2A29, 0x2427262520232221, \
0x1C1F1E1D181B1A19, 0x1417161510131211, \
0x0C0F0E0D080B0A09, 0x0407060500030201 ))
#define mm512_rol1x8_32( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3D3C3F3A39383B, 0x3635343732313033, \
0x2E2D2C2F2A29282B, 0x2625242722212023, \
0x1E1D1C1F1A19181B, 0x1615141712111013, \
0x0E0D0C0F0A09080B, 0x0605040702010003 ) )
//
// Rotate elements from 2 512 bit vectors in place, source arguments
// are overwritten.
// These can all be done with 2 permutex2var instructions but they are
// slower than either xor or alignr and require AVX512VBMI.
#define mm512_swap512_1024(v1, v2) \
v1 = _mm512_xor_si512(v1, v2); \
v2 = _mm512_xor_si512(v1, v2); \
v1 = _mm512_xor_si512(v1, v2);
#define mm512_ror1x256_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 4 ); \
v1 = _mm512_alignr_epi64( v2, v1, 4 ); \
v2 = t; \
} while(0)
#define mm512_rol1x256_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 4 ); \
v2 = _mm512_alignr_epi64( v2, v1, 4 ); \
v1 = t; \
} while(0)
#define mm512_ror1x128_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 2 ); \
v1 = _mm512_alignr_epi64( v2, v1, 2 ); \
v2 = t; \
} while(0)
#define mm512_rol1x128_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 6 ); \
v2 = _mm512_alignr_epi64( v2, v1, 6 ); \
v1 = t; \
} while(0)
#define mm512_ror1x64_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 1 ); \
v1 = _mm512_alignr_epi64( v2, v1, 1 ); \
v2 = t; \
} while(0)
#define mm512_rol1x64_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi64( v1, v2, 7 ); \
v2 = _mm512_alignr_epi64( v2, v1, 7 ); \
v1 = t; \
} while(0)
#define mm512_ror1x32_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi32( v1, v2, 1 ); \
v1 = _mm512_alignr_epi32( v2, v1, 1 ); \
v2 = t; \
} while(0)
#define mm512_rol1x32_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi32( v1, v2, 15 ); \
v2 = _mm512_alignr_epi32( v2, v1, 15 ); \
v1 = t; \
} while(0)
#endif // AVX512
#endif // SIMD_512_H__