Files
cpuminer-opt-gpu/simd-utils/simd-int.h
Jay D Dee 72330eb5a7 v3.9.9
2019-10-10 19:58:34 -04:00

127 lines
4.6 KiB
C

#if !defined(SIMD_INT_H__)
#define SIMD_INT_H__ 1
///////////////////////////////////
//
// Integers up to 128 bits.
//
// These utilities enhance support for integers up to 128 bits.
// All standard operations are supported on 128 bit integers except
// numeric constant representation and IO. 128 bit integers must be built
// and displayed as 2 64 bit halves, just like the old times.
//
// Some utilities are also provided for smaller integers, most notably
// bit rotation.
// MMX has no extract instruction for 32 bit elements so this:
// Lo is trivial, high is a simple shift.
// Input may be uint64_t or __m64, returns uint32_t.
#define u64_extr_lo32(a) ( (uint32_t)( (uint64_t)(a) ) )
#define u64_extr_hi32(a) ( (uint32_t)( ((uint64_t)(a)) >> 32) )
#define u64_extr_32( a, n ) ( (uint32_t)( (a) >> ( ( 2-(n)) <<5 ) ) )
#define u64_extr_16( a, n ) ( (uint16_t)( (a) >> ( ( 4-(n)) <<4 ) ) )
#define u64_extr_8( a, n ) ( (uint8_t) ( (a) >> ( ( 8-(n)) <<3 ) ) )
// Rotate bits in various sized integers.
#define u64_ror_64( x, c ) \
(uint64_t)( ( (uint64_t)(x) >> (c) ) | ( (uint64_t)(x) << (64-(c)) ) )
#define u64_rol_64( x, c ) \
(uint64_t)( ( (uint64_t)(x) << (c) ) | ( (uint64_t)(x) >> (64-(c)) ) )
#define u32_ror_32( x, c ) \
(uint32_t)( ( (uint32_t)(x) >> (c) ) | ( (uint32_t)(x) << (32-(c)) ) )
#define u32_rol_32( x, c ) \
(uint32_t)( ( (uint32_t)(x) << (c) ) | ( (uint32_t)(x) >> (32-(c)) ) )
#define u16_ror_16( x, c ) \
(uint16_t)( ( (uint16_t)(x) >> (c) ) | ( (uint16_t)(x) << (16-(c)) ) )
#define u16_rol_16( x, c ) \
(uint16_t)( ( (uint16_t)(x) << (c) ) | ( (uint16_t)(x) >> (16-(c)) ) )
#define u8_ror_8( x, c ) \
(uint8_t) ( ( (uint8_t) (x) >> (c) ) | ( (uint8_t) (x) << ( 8-(c)) ) )
#define u8_rol_8( x, c ) \
(uint8_t) ( ( (uint8_t) (x) << (c) ) | ( (uint8_t) (x) >> ( 8-(c)) ) )
// Endian byte swap
#define bswap_64( a ) __builtin_bswap64( a )
#define bswap_32( a ) __builtin_bswap32( a )
// 64 bit mem functions use integral sizes instead of bytes, data must
// be aligned to 64 bits. Mostly for scaled indexing convenience.
static inline void memcpy_64( uint64_t *dst, const uint64_t *src, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = src[i]; }
static inline void memset_zero_64( uint64_t *src, int n )
{ for ( int i = 0; i < n; i++ ) src[i] = 0ull; }
static inline void memset_64( uint64_t *dst, const uint64_t a, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
///////////////////////////////////////
//
// 128 bit integers
//
// 128 bit integers are inneficient and not a shortcut for __m128i.
// Native type __int128 supported starting with GCC-4.8.
//
// __int128 uses two 64 bit GPRs to hold the data. The main benefits are
// for 128 bit arithmetic. Vectors are preferred when 128 bit arith
// is not required. int128 also works better with other integer sizes.
// Vectors benefit from wider registers.
//
// For safety use typecasting on all numeric arguments.
//
// Use typecasting for conversion to/from 128 bit vector:
// __m128i v128 = (__m128i)my_int128l
// __m256i v256 = _mm256_set_m128i( (__m128i)my_int128, (__m128i)my_int128 );
// my_int128 = (uint128_t)_mm256_extracti128_si256( v256, 1 );
// Compiler check for __int128 support
// Configure also has a test for int128.
#if ( __GNUC__ > 4 ) || ( ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ >= 8 ) )
#define GCC_INT128 1
#endif
#if !defined(GCC_INT128)
#warning "__int128 not supported, requires GCC-4.8 or newer."
#endif
#if defined(GCC_INT128)
// Familiar looking type names
typedef __int128 int128_t;
typedef unsigned __int128 uint128_t;
// Maybe usefull for making constants.
#define mk_uint128( hi, lo ) \
( ( (uint128_t)(hi) << 64 ) | ( (uint128_t)(lo) ) )
// Extracting the low bits is a trivial cast.
// These specialized functions are optimized while providing a
// consistent interface.
#define u128_hi64( x ) ( (uint64_t)( (uint128_t)(x) >> 64 ) )
#define u128_lo64( x ) ( (uint64_t)(x) )
// Generic extract, don't use for extracting low bits, cast instead.
#define u128_extr_64( a, n ) ( (uint64_t)( (a) >> ( ( 2-(n)) <<6 ) ) )
#define u128_extr_32( a, n ) ( (uint32_t)( (a) >> ( ( 4-(n)) <<5 ) ) )
#define u128_extr_16( a, n ) ( (uint16_t)( (a) >> ( ( 8-(n)) <<4 ) ) )
#define u128_extr_8( a, n ) ( (uint8_t) ( (a) >> ( (16-(n)) <<3 ) ) )
// Not much need for this but it fills a gap.
#define u128_ror_128( x, c ) \
( ( (uint128_t)(x) >> (c) ) | ( (uint128_t)(x) << (128-(c)) ) )
#define u128_rol_128( x, c ) \
( ( (uint128_t)(x) << (c) ) | ( (uint128_t)(x) >> (128-(c)) ) )
#endif // GCC_INT128
#endif // SIMD_INT_H__