Files
cpuminer-opt-gpu/algo/sha/sha256d-4way.c
Jay D Dee 66191db93c v25.4
2025-06-20 20:31:41 -04:00

429 lines
14 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "sha256-hash.h"
#include "sha256d.h"
static const uint32_t sha256_iv[8] __attribute__ ((aligned (32))) =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
#if defined(SHA256D_SHA)
int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstatea[8] __attribute__ ((aligned (32)));
uint32_t mstateb[8] __attribute__ ((aligned (32)));
uint32_t sstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
// hash first 64 byte block of data
sha256_transform_le( mstatea, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = 0;
block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 80*8; // bit count
sha256_prehash_3rounds( mstateb, block1a, sstate, mstatea);
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 32*8; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_2x_final_rounds( block2a, block2b, block1a, block1b,
mstateb, mstateb, sstate, sstate );
sha256_2x_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256D_NEON_SHA2)
int scanhash_sha256d_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
// hash first 64 byte block of data
sha256_transform_le( mstate, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = 0;
block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 80*8; // bit count
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 32*8; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_neon_x2sha_transform_le( block2a, block2b, block1a, block1b,
mstate, mstate );
sha256_neon_x2sha_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256D_16WAY)
int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m512i block[16] __attribute__ ((aligned (128)));
__m512i buf[16] __attribute__ ((aligned (64)));
__m512i hash32[8] __attribute__ ((aligned (64)));
__m512i mstate1[8] __attribute__ ((aligned (64)));
__m512i mstate2[8] __attribute__ ((aligned (64)));
__m512i istate[8] __attribute__ ((aligned (64)));
__m512i mexp_pre[8] __attribute__ ((aligned (64)));
uint32_t phash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
const __m512i last_byte = v512_32( 0x80000000 );
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const __m512i sixteen = v512_32( 16 );
const bool bench = opt_benchmark;
// prehash first block directly from pdata
sha256_transform_le( phash, pdata, sha256_iv );
// vectorize block 0 hash for second block
mstate1[0] = v512_32( phash[0] );
mstate1[1] = v512_32( phash[1] );
mstate1[2] = v512_32( phash[2] );
mstate1[3] = v512_32( phash[3] );
mstate1[4] = v512_32( phash[4] );
mstate1[5] = v512_32( phash[5] );
mstate1[6] = v512_32( phash[6] );
mstate1[7] = v512_32( phash[7] );
// second message block data, with nonce & padding
buf[0] = v512_32( pdata[16] );
buf[1] = v512_32( pdata[17] );
buf[2] = v512_32( pdata[18] );
buf[3] = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
buf[4] = last_byte;
memset_zero_512( buf+5, 10 );
buf[15] = v512_32( 80*8 ); // bit count
// partially pre-expand & prehash second message block, avoiding the nonces
sha256_16x32_prehash_3rounds( mstate2, mexp_pre, buf, mstate1 );
// vectorize IV for second hash
istate[0] = v512_32( sha256_iv[0] );
istate[1] = v512_32( sha256_iv[1] );
istate[2] = v512_32( sha256_iv[2] );
istate[3] = v512_32( sha256_iv[3] );
istate[4] = v512_32( sha256_iv[4] );
istate[5] = v512_32( sha256_iv[5] );
istate[6] = v512_32( sha256_iv[6] );
istate[7] = v512_32( sha256_iv[7] );
// initialize padding for second hash
block[ 8] = last_byte;
memset_zero_512( block+9, 6 );
block[15] = v512_32( 32*8 ); // bit count
do
{
sha256_16x32_final_rounds( block, buf, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_16x32_transform_le_short(
hash32, block, istate, ptarget ) ) )
{
for ( int lane = 0; lane < 16; lane++ )
{
extr_lane_16x32( phash, hash32, lane, 256 );
casti_m256i( phash, 0 ) = mm256_bswap_32( casti_m256i( phash, 0 ) );
if ( likely( valid_hash( phash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, phash, mythr );
}
}
}
buf[3] = _mm512_add_epi32( buf[3], sixteen );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256D_8WAY)
int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m256i vdata[32] __attribute__ ((aligned (64)));
__m256i block[16] __attribute__ ((aligned (32)));
__m256i hash32[8] __attribute__ ((aligned (32)));
__m256i istate[8] __attribute__ ((aligned (32)));
__m256i mstate1[8] __attribute__ ((aligned (32)));
__m256i mstate2[8] __attribute__ ((aligned (32)));
__m256i mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m256i *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m256i last_byte = v256_32( 0x80000000 );
const __m256i eight = v256_32( 8 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v256_32( pdata[i] );
*noncev = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_256( vdata+16 + 5, 10 );
vdata[16+15] = v256_32( 80*8 );
block[ 8] = last_byte;
memset_zero_256( block + 9, 6 );
block[15] = v256_32( 32*8 );
// initialize state for second hash
istate[0] = v256_32( sha256_iv[0] );
istate[1] = v256_32( sha256_iv[1] );
istate[2] = v256_32( sha256_iv[2] );
istate[3] = v256_32( sha256_iv[3] );
istate[4] = v256_32( sha256_iv[4] );
istate[5] = v256_32( sha256_iv[5] );
istate[6] = v256_32( sha256_iv[6] );
istate[7] = v256_32( sha256_iv[7] );
sha256_8x32_transform_le( mstate1, vdata, istate );
// Do 3 rounds on the first 12 bytes of the next block
sha256_8x32_prehash_3rounds( mstate2, mexp_pre, vdata + 16, mstate1 );
do
{
sha256_8x32_final_rounds( block, vdata+16, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_8x32_transform_le_short( hash32, block,
istate, ptarget ) ) )
{
for ( int lane = 0; lane < 8; lane++ )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
casti_m256i( lane_hash, 0 ) =
mm256_bswap_32( casti_m256i( lane_hash, 0 ) );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lane_hash, mythr );
}
}
}
*noncev = _mm256_add_epi32( *noncev, eight );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256D_4WAY)
int scanhash_sha256d_4x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash1[8] __attribute__ ((aligned (32)));
v128_t mhash2[8] __attribute__ ((aligned (32)));
v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lhash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
vdata[16+3] = v128_set32( n+3, n+2, n+1, n );
vdata[16+4] = last_byte;
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 80*8 );
block[ 8] = last_byte;
v128_memset_zero( block + 9, 6 );
block[15] = v128_32( 32*8 );
// initialize state
iv[0] = v128_32( sha256_iv[0] );
iv[1] = v128_32( sha256_iv[1] );
iv[2] = v128_32( sha256_iv[2] );
iv[3] = v128_32( sha256_iv[3] );
iv[4] = v128_32( sha256_iv[4] );
iv[5] = v128_32( sha256_iv[5] );
iv[6] = v128_32( sha256_iv[6] );
iv[7] = v128_32( sha256_iv[7] );
sha256_4x32_transform_le( mhash1, vdata, iv );
sha256_4x32_prehash_3rounds( mhash2, mexp_pre, vdata + 16, mhash1 );
do
{
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
sha256_4x32_transform_le( hash32, block, iv );
for ( int lane = 0; lane < 4; lane++ )
{
if ( unlikely( bswap_32( hash32_d7[ lane ] ) <= targ32_d7 ) )
{
extr_lane_4x32( lhash, hash32, lane, 256 );
casti_v128( lhash, 0 ) = v128_bswap32( casti_v128( lhash, 0 ) );
casti_v128( lhash, 1 ) = v128_bswap32( casti_v128( lhash, 1 ) );
if ( likely( valid_hash( lhash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lhash, mythr );
}
}
}
vdata[16+3] = v128_add32( vdata[16+3], four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif