mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
536 lines
19 KiB
C
536 lines
19 KiB
C
#if !defined(SIMD_256_H__)
|
|
#define SIMD_256_H__ 1
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
//
|
|
// AVX2 256 bit vectors
|
|
//
|
|
// Basic support for 256 bit vectors is available with AVX but integer
|
|
// support requires AVX2.
|
|
//
|
|
// AVX512VL backports some AVX512 features to 256 bit vectors and can produce
|
|
// more efficient implementations of some functions. They will be selected
|
|
// automatically but their use is limited because 256 bit vectors are less
|
|
// likely to be used when 512 is available.
|
|
//
|
|
// AVX10_256 will support AVX512VL instructions on CPUs limited to 256 bit
|
|
// vectors. This will require enabling when the compiler's AVX10 feature
|
|
// macros are known.
|
|
//
|
|
// "_mm256_shuffle_epi8" and "_mm256_alignr_epi8" are restricted to 128 bit
|
|
// lanes and data can't cross the 128 bit lane boundary.
|
|
// Instructions that can move data across 128 bit lane boundary incur a
|
|
// performance penalty over those that can't.
|
|
|
|
#if defined(__x86_64__) && defined(__AVX__)
|
|
|
|
// Used instead of casting.
|
|
typedef union
|
|
{
|
|
__m256i m256;
|
|
__m128i m128[2];
|
|
uint64_t u64[4];
|
|
uint32_t u32[8];
|
|
} __attribute__ ((aligned (32))) m256_ovly;
|
|
|
|
|
|
#define v256_64(i) _mm256_set1_epi64x(i)
|
|
#define v256_32(i) _mm256_set1_epi32(i)
|
|
|
|
//
|
|
// Pointer casting
|
|
|
|
// p = any aligned pointer
|
|
// returns p as pointer to vector type, not very useful
|
|
#define castp_m256i(p) ((__m256i*)(p))
|
|
|
|
// p = any aligned pointer
|
|
// returns *p, watch your pointer arithmetic
|
|
#define cast_m256i(p) (*((__m256i*)(p)))
|
|
|
|
// p = any aligned pointer, i = scaled array index
|
|
// returns value p[i]
|
|
#define casti_m256i(p,i) (((__m256i*)(p))[(i)])
|
|
|
|
// p = any aligned pointer, o = scaled offset
|
|
// returns pointer p+o
|
|
#define casto_m256i(p,o) (((__m256i*)(p))+(o))
|
|
|
|
#endif
|
|
|
|
#if defined(__AVX2__)
|
|
|
|
// Broadcast, ie set1, from 128 bit vector input.
|
|
#define mm256_bcast_m128( v ) \
|
|
_mm256_permute4x64_epi64( _mm256_castsi128_si256( v ), 0x44 )
|
|
|
|
// Set either the low or high 64 bit elements in 128 bit lanes, other elements
|
|
// are set to zero.
|
|
#if defined(__AVX512VL__)
|
|
//TODO Enable for AVX10_256
|
|
|
|
#define mm256_bcast128lo_64( i64 ) _mm256_maskz_set1_epi64( 0x55, i64 )
|
|
#define mm256_bcast128hi_64( i64 ) _mm256_maskz_set1_epi64( 0xaa, i64 )
|
|
|
|
#else
|
|
|
|
#define mm256_bcast128lo_64( i64 ) mm256_bcast_m128( mm128_mov64_128( i64 ) )
|
|
|
|
#define mm256_bcast128hi_64( i64 ) _mm256_permute4x64_epi64( \
|
|
_mm256_castsi128_si256( mm128_mov64_128( i64 ) ), 0x11 )
|
|
|
|
#endif
|
|
|
|
#define mm256_set2_64( i1, i0 ) mm256_bcast_m128( _mm_set_epi64x( i1, i0 ) )
|
|
|
|
#define mm256_set4_32( i3, i2, i1, i0 ) \
|
|
mm256_bcast_m128( _mm_set_epi32( i3, i2, i1, i0 ) )
|
|
|
|
// All SIMD constant macros are actually functions containing executable
|
|
// code and therefore can't be used as compile time initializers.
|
|
|
|
#define m256_zero _mm256_setzero_si256()
|
|
#define m256_one_128 mm256_bcast_m128( m128_one_128 )
|
|
|
|
static inline __m256i mm256_neg1_fn()
|
|
{
|
|
__m256i v;
|
|
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(v) );
|
|
return v;
|
|
}
|
|
#define m256_neg1 mm256_neg1_fn()
|
|
|
|
//
|
|
// Memory functions
|
|
// n = number of 256 bit (32 byte) vectors
|
|
|
|
static inline void memset_zero_256( __m256i *dst, const int n )
|
|
{ for ( int i = 0; i < n; i++ ) dst[i] = m256_zero; }
|
|
|
|
static inline void memset_256( __m256i *dst, const __m256i a, const int n )
|
|
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
|
|
|
|
static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
|
|
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
|
|
|
|
|
|
//
|
|
// Basic operations without SIMD equivalent
|
|
|
|
#if defined(__AVX512VL__)
|
|
//TODO Enable for AVX10_256
|
|
|
|
static inline __m256i mm256_not( const __m256i v )
|
|
{ return _mm256_ternarylogic_epi64( v, v, v, 1 ); }
|
|
|
|
#else
|
|
|
|
#define mm256_not( v ) _mm256_xor_si256( v, m256_neg1 ) \
|
|
|
|
#endif
|
|
|
|
// Add 4 values, fewer dependencies than sequential addition.
|
|
|
|
#define mm256_add4_64( a, b, c, d ) \
|
|
_mm256_add_epi64( _mm256_add_epi64( a, b ), _mm256_add_epi64( c, d ) )
|
|
|
|
#define mm256_add4_32( a, b, c, d ) \
|
|
_mm256_add_epi32( _mm256_add_epi32( a, b ), _mm256_add_epi32( c, d ) )
|
|
|
|
#if defined(__AVX512VL__)
|
|
//TODO Enable for AVX10_256
|
|
|
|
// a ^ b ^ c
|
|
#define mm256_xor3( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0x96 )
|
|
|
|
// legacy convenience only
|
|
#define mm256_xor4( a, b, c, d ) _mm256_xor_si256( a, mm256_xor3( b, c, d ) )
|
|
|
|
// a & b & c
|
|
#define mm256_and3( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0x80 )
|
|
|
|
// a | b | c
|
|
#define mm256_or3( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0xfe )
|
|
|
|
// a ^ ( b & c )
|
|
#define mm256_xorand( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0x78 )
|
|
|
|
// a & ( b ^ c )
|
|
#define mm256_andxor( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0x60 )
|
|
|
|
// a ^ ( b | c )
|
|
#define mm256_xoror( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0x1e )
|
|
|
|
// a ^ ( ~b & c )
|
|
#define mm256_xorandnot( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0xd2 )
|
|
|
|
// a | ( b & c )
|
|
#define mm256_orand( a, b, c ) _mm256_ternarylogic_epi64( a, b, c, 0xf8 )
|
|
|
|
// ~( a ^ b ), same as (~a) ^ b
|
|
#define mm256_xnor( a, b ) _mm256_ternarylogic_epi64( a, b, b, 0x81 )
|
|
|
|
#else
|
|
|
|
#define mm256_xor3( a, b, c ) \
|
|
_mm256_xor_si256( a, _mm256_xor_si256( b, c ) )
|
|
|
|
#define mm256_xor4( a, b, c, d ) \
|
|
_mm256_xor_si256( _mm256_xor_si256( a, b ), _mm256_xor_si256( c, d ) )
|
|
|
|
#define mm256_and3( a, b, c ) \
|
|
_mm256_and_si256( a, _mm256_and_si256( b, c ) )
|
|
|
|
#define mm256_or3( a, b, c ) \
|
|
_mm256_or_si256( a, _mm256_or_si256( b, c ) )
|
|
|
|
#define mm256_xorand( a, b, c ) \
|
|
_mm256_xor_si256( a, _mm256_and_si256( b, c ) )
|
|
|
|
#define mm256_andxor( a, b, c ) \
|
|
_mm256_and_si256( a, _mm256_xor_si256( b, c ))
|
|
|
|
#define mm256_xoror( a, b, c ) \
|
|
_mm256_xor_si256( a, _mm256_or_si256( b, c ) )
|
|
|
|
#define mm256_xorandnot( a, b, c ) \
|
|
_mm256_xor_si256( a, _mm256_andnot_si256( b, c ) )
|
|
|
|
#define mm256_orand( a, b, c ) \
|
|
_mm256_or_si256( a, _mm256_and_si256( b, c ) )
|
|
|
|
#define mm256_xnor( a, b ) \
|
|
mm256_not( _mm256_xor_si256( a, b ) )
|
|
|
|
#endif
|
|
|
|
// Mask making
|
|
// Equivalent of AVX512 _mm256_movepi64_mask & _mm256_movepi32_mask.
|
|
// Returns 4 or 8 bit integer mask from MSBit of 64 or 32 bit elements.
|
|
// Effectively a sign test.
|
|
|
|
#define mm256_movmask_64( v ) \
|
|
_mm256_movemask_pd( _mm256_castsi256_pd( v ) )
|
|
|
|
#define mm256_movmask_32( v ) \
|
|
_mm256_movemask_ps( _mm256_castsi256_ps( v ) )
|
|
|
|
//
|
|
// Bit rotations.
|
|
|
|
// Slow version, used as last resort
|
|
#define mm256_ror_64_avx2( v, c ) \
|
|
_mm256_or_si256( _mm256_srli_epi64( v, c ), \
|
|
_mm256_slli_epi64( v, 64-(c) ) )
|
|
|
|
#define mm256_rol_64_avx2( v, c ) \
|
|
_mm256_or_si256( _mm256_slli_epi64( v, c ), \
|
|
_mm256_srli_epi64( v, 64-(c) ) )
|
|
|
|
#define mm256_ror_32_avx2( v, c ) \
|
|
_mm256_or_si256( _mm256_srli_epi32( v, c ), \
|
|
_mm256_slli_epi32( v, 32-(c) ) )
|
|
|
|
#define mm256_rol_32_avx2( v, c ) \
|
|
_mm256_or_si256( _mm256_slli_epi32( v, c ), \
|
|
_mm256_srli_epi32( v, 32-(c) ) )
|
|
|
|
#if defined(__AVX512VL__)
|
|
|
|
#define mm256_ror_64 _mm256_ror_epi64
|
|
#define mm256_rol_64 _mm256_rol_epi64
|
|
#define mm256_ror_32 _mm256_ror_epi32
|
|
#define mm256_rol_32 _mm256_rol_epi32
|
|
|
|
#else
|
|
|
|
#define mm256_ror_64( v, c ) \
|
|
( (c) == 32 ) ? _mm256_shuffle_epi32( v, 0xb1 ) \
|
|
: ( (c) == 24 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0a09080f0e0d0c0b, 0x0201000706050403 ) ) ) \
|
|
: ( (c) == 16 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x09080f0e0d0c0b0a, 0x0100070605040302 ) ) ) \
|
|
: ( (c) == 8 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x080f0e0d0c0b0a09, 0x0007060504030201 ) ) ) \
|
|
: mm256_ror_64_avx2( v, c )
|
|
|
|
#define mm256_rol_64( v, c ) \
|
|
( (c) == 32 ) ? _mm256_shuffle_epi32( v, 0xb1 ) \
|
|
: ( (c) == 24 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0c0b0a09080f0e0d, 0x0403020100070605 ) ) ) \
|
|
: ( (c) == 16 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0d0c0b0a09080f0e, 0x0504030201000706 ) ) ) \
|
|
: ( (c) == 8 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0e0d0c0b0a09080f, 0x0605040302010007 ) ) ) \
|
|
: mm256_rol_64_avx2( v, c )
|
|
|
|
#define mm256_ror_32( v, c ) \
|
|
( (c) == 16 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0d0c0f0e09080b0a, 0x0504070601000302 ) ) )\
|
|
: ( (c) == 8 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0c0f0e0d080b0a09, 0x0407060500030201 ) ) ) \
|
|
: mm256_ror_32_avx2( v, c )
|
|
|
|
#define mm256_rol_32( v, c ) \
|
|
( (c) == 16 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0d0c0f0e09080b0a, 0x0504070601000302 ) ) ) \
|
|
: ( (c) == 8 ) ? _mm256_shuffle_epi8( v, mm256_bcast_m128( \
|
|
_mm_set_epi64x( 0x0e0d0c0f0a09080b, 0x0605040702010003 ) ) ) \
|
|
: mm256_rol_32_avx2( v, c )
|
|
|
|
#endif
|
|
|
|
//
|
|
// x2 rotates elements in 2 individual vectors in a double buffered
|
|
// optimization for AVX2, does nothing for AVX512 but is here for
|
|
// transparency.
|
|
|
|
#if defined(__AVX512VL__)
|
|
//TODO Enable for AVX10_256
|
|
/*
|
|
#define mm256_ror_64 _mm256_ror_epi64
|
|
#define mm256_rol_64 _mm256_rol_epi64
|
|
#define mm256_ror_32 _mm256_ror_epi32
|
|
#define mm256_rol_32 _mm256_rol_epi32
|
|
*/
|
|
#define mm256_rorx2_64( v1, v0, c ) \
|
|
_mm256_ror_epi64( v0, c ); \
|
|
_mm256_ror_epi64( v1, c )
|
|
|
|
#define mm256_rolx2_64( v1, v0, c ) \
|
|
_mm256_rol_epi64( v0, c ); \
|
|
_mm256_rol_epi64( v1, c )
|
|
|
|
#define mm256_rorx2_32( v1, v0, c ) \
|
|
_mm256_ror_epi32( v0, c ); \
|
|
_mm256_ror_epi32( v1, c )
|
|
|
|
#define mm256_rolx2_32( v1, v0, c ) \
|
|
_mm256_rol_epi32( v0, c ); \
|
|
_mm256_rol_epi32( v1, c )
|
|
|
|
#else // AVX2
|
|
/*
|
|
// use shuflr64 shuflr32 below for optimized bit rotations of multiples of 8.
|
|
|
|
#define mm256_ror_64( v, c ) \
|
|
_mm256_or_si256( _mm256_srli_epi64( v, c ), \
|
|
_mm256_slli_epi64( v, 64-(c) ) )
|
|
|
|
#define mm256_rol_64( v, c ) \
|
|
_mm256_or_si256( _mm256_slli_epi64( v, c ), \
|
|
_mm256_srli_epi64( v, 64-(c) ) )
|
|
|
|
#define mm256_ror_32( v, c ) \
|
|
_mm256_or_si256( _mm256_srli_epi32( v, c ), \
|
|
_mm256_slli_epi32( v, 32-(c) ) )
|
|
|
|
#define mm256_rol_32( v, c ) \
|
|
_mm256_or_si256( _mm256_slli_epi32( v, c ), \
|
|
_mm256_srli_epi32( v, 32-(c) ) )
|
|
*/
|
|
#define mm256_rorx2_64( v1, v0, c ) \
|
|
{ \
|
|
__m256i t0 = _mm256_srli_epi64( v0, c ); \
|
|
__m256i t1 = _mm256_srli_epi64( v1, c ); \
|
|
v0 = _mm256_slli_epi64( v0, 64-(c) ); \
|
|
v1 = _mm256_slli_epi64( v1, 64-(c) ); \
|
|
v0 = _mm256_or_si256( v0, t0 ); \
|
|
v1 = _mm256_or_si256( v1, t1 ); \
|
|
}
|
|
|
|
#define mm256_rolx2_64( v1, v0, c ) \
|
|
{ \
|
|
__m256i t0 = _mm256_slli_epi64( v0, c ); \
|
|
__m256i t1 = _mm256_slli_epi64( v1, c ); \
|
|
v0 = _mm256_srli_epi64( v0, 64-(c) ); \
|
|
v1 = _mm256_srli_epi64( v1, 64-(c) ); \
|
|
v0 = _mm256_or_si256( v0, t0 ); \
|
|
v1 = _mm256_or_si256( v1, t1 ); \
|
|
}
|
|
|
|
#define mm256_rorx2_32( v1, v0, c ) \
|
|
{ \
|
|
__m256i t0 = _mm256_srli_epi32( v0, c ); \
|
|
__m256i t1 = _mm256_srli_epi32( v1, c ); \
|
|
v0 = _mm256_slli_epi32( v0, 32-(c) ); \
|
|
v1 = _mm256_slli_epi32( v1, 32-(c) ); \
|
|
v0 = _mm256_or_si256( v0, t0 ); \
|
|
v1 = _mm256_or_si256( v1, t1 ); \
|
|
}
|
|
|
|
#define mm256_rolx2_32( v1, v0, c ) \
|
|
{ \
|
|
__m256i t0 = _mm256_slli_epi32( v0, c ); \
|
|
__m256i t1 = _mm256_slli_epi32( v1, c ); \
|
|
v0 = _mm256_srli_epi32( v0, 32-(c) ); \
|
|
v1 = _mm256_srli_epi32( v1, 32-(c) ); \
|
|
v0 = _mm256_or_si256( v0, t0 ); \
|
|
v1 = _mm256_or_si256( v1, t1 ); \
|
|
}
|
|
|
|
#endif // AVX512 else AVX2
|
|
|
|
//
|
|
// Cross lane shuffles
|
|
//
|
|
// Rotate elements accross all lanes.
|
|
|
|
// Swap 128 bit elements in 256 bit vector.
|
|
#define mm256_swap_128( v ) _mm256_permute4x64_epi64( v, 0x4e )
|
|
#define mm256_shuflr_128 mm256_swap_128
|
|
#define mm256_shufll_128 mm256_swap_128
|
|
|
|
// Rotate 256 bit vector by one 64 bit element
|
|
#define mm256_shuflr_64( v ) _mm256_permute4x64_epi64( v, 0x39 )
|
|
#define mm256_shufll_64( v ) _mm256_permute4x64_epi64( v, 0x93 )
|
|
|
|
|
|
/* Not used
|
|
// Rotate 256 bit vector by one 32 bit element.
|
|
#if defined(__AVX512VL__)
|
|
|
|
static inline __m256i mm256_shuflr_32( const __m256i v )
|
|
{ return _mm256_alignr_epi32( v, v, 1 ); }
|
|
|
|
static inline __m256i mm256_shufll_32( const __m256i v )
|
|
{ return _mm256_alignr_epi32( v, v, 15 ); }
|
|
|
|
#else
|
|
|
|
#define mm256_shuflr_32( v ) \
|
|
_mm256_permutevar8x32_epi32( v, \
|
|
_mm256_set_spi64x( 0x0000000000000007, 0x0000000600000005, \
|
|
0x0000000400000003, 0x0000000200000001 ) )
|
|
|
|
#define mm256_shufll_32( v ) \
|
|
_mm256_permutevar8x32_epi32( v, \
|
|
_mm256_set_epi64x( 0x0000000600000005, 0x0000000400000003, \
|
|
0x0000000200000001, 0x0000000000000007 ) )
|
|
|
|
#endif
|
|
*/
|
|
|
|
//
|
|
// Rotate elements within each 128 bit lane of 256 bit vector.
|
|
|
|
// Limited 2 input shuffle
|
|
#define mm256_shuffle2_64( v1, v2, c ) \
|
|
_mm256_castpd_si256( _mm256_shuffle_pd( _mm256_castsi256_pd( v1 ), \
|
|
_mm256_castsi256_pd( v2 ), c ) );
|
|
|
|
#define mm256_shuffle2_32( v1, v2, c ) \
|
|
_mm256_castps_si256( _mm256_shuffle_ps( _mm256_castsi256_ps( v1 ), \
|
|
_mm256_castsi256_ps( v2 ), c ) );
|
|
|
|
#define mm256_swap128_64( v ) _mm256_shuffle_epi32( v, 0x4e )
|
|
#define mm256_shuflr128_64 mm256_swap128_64
|
|
#define mm256_shufll128_64 mm256_swap128_64
|
|
|
|
#define mm256_shuflr128_32( v ) _mm256_shuffle_epi32( v, 0x39 )
|
|
#define mm256_shufll128_32( v ) _mm256_shuffle_epi32( v, 0x93 )
|
|
|
|
/* Not used
|
|
static inline __m256i mm256_shuflr128_x8( const __m256i v, const int c )
|
|
{ return _mm256_alignr_epi8( v, v, c ); }
|
|
*/
|
|
|
|
// Same as bit rotation but logically used as byte/word rotation.
|
|
#define mm256_swap64_32( v ) mm256_ror_64( v, 32 )
|
|
|
|
// Reverse byte order in elements, endian bswap.
|
|
#define mm256_bswap_64( v ) \
|
|
_mm256_shuffle_epi8( v, mm256_bcast_m128( _mm_set_epi64x( \
|
|
0x08090a0b0c0d0e0f, 0x0001020304050607 ) ) )
|
|
|
|
#define mm256_bswap_32( v ) \
|
|
_mm256_shuffle_epi8( v, mm256_bcast_m128( _mm_set_epi64x( \
|
|
0x0c0d0e0f08090a0b, 0x0405060700010203 ) ) )
|
|
|
|
#define mm256_bswap_16( v ) \
|
|
_mm256_shuffle_epi8( v, mm256_bcast_m128( _mm_set_epi64x( \
|
|
0x0e0f0c0d0a0b0809, 0x0607040502030001 ) ) )
|
|
//
|
|
|
|
// Source and destination are pointers, may point to same memory.
|
|
// 8 byte qword * 8 qwords * 4 lanes = 256 bytes
|
|
#define mm256_block_bswap_64( d, s ) \
|
|
{ \
|
|
__m256i ctl = mm256_bcast_m128( _mm_set_epi64x( 0x08090a0b0c0d0e0f, \
|
|
0x0001020304050607 ) ); \
|
|
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
|
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
|
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
|
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
|
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
|
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
|
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
|
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
|
}
|
|
#define mm256_block_bswap64_512 mm256_block_bswap_64
|
|
|
|
#define mm256_block_bswap64_1024( d, s ) \
|
|
{ \
|
|
__m256i ctl = mm256_bcast_m128( _mm_set_epi64x( 0x08090a0b0c0d0e0f, \
|
|
0x0001020304050607 ) ); \
|
|
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
|
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
|
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
|
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
|
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
|
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
|
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
|
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
|
casti_m256i( d, 8 ) = _mm256_shuffle_epi8( casti_m256i( s, 8 ), ctl ); \
|
|
casti_m256i( d, 9 ) = _mm256_shuffle_epi8( casti_m256i( s, 9 ), ctl ); \
|
|
casti_m256i( d,10 ) = _mm256_shuffle_epi8( casti_m256i( s,10 ), ctl ); \
|
|
casti_m256i( d,11 ) = _mm256_shuffle_epi8( casti_m256i( s,11 ), ctl ); \
|
|
casti_m256i( d,12 ) = _mm256_shuffle_epi8( casti_m256i( s,12 ), ctl ); \
|
|
casti_m256i( d,13 ) = _mm256_shuffle_epi8( casti_m256i( s,13 ), ctl ); \
|
|
casti_m256i( d,14 ) = _mm256_shuffle_epi8( casti_m256i( s,14 ), ctl ); \
|
|
casti_m256i( d,15 ) = _mm256_shuffle_epi8( casti_m256i( s,15 ), ctl ); \
|
|
}
|
|
|
|
// 4 byte dword * 8 dwords * 8 lanes = 256 bytes
|
|
#define mm256_block_bswap_32( d, s ) \
|
|
{ \
|
|
__m256i ctl = mm256_bcast_m128( _mm_set_epi64x( 0x0c0d0e0f08090a0b, \
|
|
0x0405060700010203 ) ); \
|
|
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
|
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
|
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
|
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
|
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
|
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
|
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
|
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
|
}
|
|
#define mm256_block_bswap32_256 mm256_block_bswap_32
|
|
|
|
#define mm256_block_bswap32_512( d, s ) \
|
|
{ \
|
|
__m256i ctl = mm256_bcast_m128( _mm_set_epi64x( 0x0c0d0e0f08090a0b, \
|
|
0x0405060700010203 ) ); \
|
|
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
|
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
|
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
|
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
|
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
|
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
|
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
|
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
|
casti_m256i( d, 8 ) = _mm256_shuffle_epi8( casti_m256i( s, 8 ), ctl ); \
|
|
casti_m256i( d, 9 ) = _mm256_shuffle_epi8( casti_m256i( s, 9 ), ctl ); \
|
|
casti_m256i( d,10 ) = _mm256_shuffle_epi8( casti_m256i( s,10 ), ctl ); \
|
|
casti_m256i( d,11 ) = _mm256_shuffle_epi8( casti_m256i( s,11 ), ctl ); \
|
|
casti_m256i( d,12 ) = _mm256_shuffle_epi8( casti_m256i( s,12 ), ctl ); \
|
|
casti_m256i( d,13 ) = _mm256_shuffle_epi8( casti_m256i( s,13 ), ctl ); \
|
|
casti_m256i( d,14 ) = _mm256_shuffle_epi8( casti_m256i( s,14 ), ctl ); \
|
|
casti_m256i( d,15 ) = _mm256_shuffle_epi8( casti_m256i( s,15 ), ctl ); \
|
|
}
|
|
|
|
|
|
#endif // __AVX2__
|
|
#endif // SIMD_256_H__
|
|
|