Files
cpuminer-opt-gpu/algo/groestl/groestl256-hash-4way.c
Jay D Dee 40089428c5 v3.15.7
2021-03-08 22:44:44 -05:00

331 lines
9.1 KiB
C

/* hash.c Aug 2011
* groestl512-hash-4way https://github.com/JayDDee/cpuminer-opt 2019-12.
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
*
* This code is placed in the public domain
*/
// Optimized for hash and data length that are integrals of __m128i
#include <memory.h>
#include "groestl256-intr-4way.h"
#include "miner.h"
#include "simd-utils.h"
#if defined(__AVX2__) && defined(__VAES__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
{
int i;
ctx->hashlen = hashlen;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl256_4way_full( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 32 >> 4; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_4way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_4way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // AVX512
// AVX2 + VAES
int groestl256_2way_init( groestl256_2way_context* ctx, uint64_t hashlen )
{
int i;
ctx->hashlen = hashlen;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m256_zero;
ctx->buffer[i] = m256_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl256_2way_full( groestl256_2way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 32 >> 4; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m256i* in = (__m256i*)input;
int i;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m256_zero;
ctx->buffer[i] = m256_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_2way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m256_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_2way( ctx->chaining, ctx->buffer );
OF512_2way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl256_2way_update_close( groestl256_2way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m256i* in = (__m256i*)input;
int i;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_2way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m256_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_2way( ctx->chaining, ctx->buffer );
OF512_2way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // VAES