Files
cpuminer-opt-gpu/simd-utils/simd-512.h
Jay D Dee 3dd6787531 v3.22.0
2023-03-21 17:12:51 -04:00

549 lines
22 KiB
C

#if !defined(SIMD_512_H__)
#define SIMD_512_H__ 1
////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
//
// AVX512 512 bit vectors
//
// The baseline for these utilities is AVX512F, AVX512DQ, AVX512BW
// and AVX512VL, first available in quantity in Skylake-X.
// Some utilities may require additional AVX512 extensions available in
// subsequent architectures and are noted where used.
// AVX512VL is used to backport AVX512 instructions to 128 and 256 bit
// vectors. It is therefore not technically required for any 512 bit vector
// utilities defined below.
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// AVX512 intrinsics have a few changes from previous conventions.
//
// "_mm512_cmp" instructions now returns a bitmask instead of a vector mask.
// This removes the need for an explicit movemask instruction.
//
// Many previously sizeless (si) instructions now have sized (epi) versions
// to accomodate masking packed elements.
//
// Many AVX512 instructions have a different argument order from the AVX2
// versions of similar instructions. There is also some inconsistency in how
// different AVX512 instructions position the mask register in the argument
// list.
//
// "_mm512_permutex_epi64" only shuffles within 256 bit lanes. All other
// AVX512 permutes can cross all lanes.
//
// "_mm512_shuffle_epi8" shuffles accross the entire 512 bits. Shuffle
// instructions generally don't cross 128 bit lane boundaries and the AVX2
// version of this specific instruction does not.
//
// New alignr instructions for epi64 and epi32 operate across the entire
// vector but slower than epi8 which continues to be restricted to 128 bit
// lanes.
//
// "_mm512_permutexvar_epi8" and "_mm512_permutex2var_epi8" require
// AVX512-VBMI. The same instructions with larger elements don't have this
// requirement. "_mm512_permutexvar_epi8" also performs the same operation
// as "_mm512_shuffle_epi8" which only requires AVX512-BW.
//
// Two coding conventions are used to prevent macro argument side effects:
// - if a macro arg is used in an expression it must be protected by
// parentheses to ensure an expression argument is evaluated first.
// - if an argument is to referenced multiple times a C inline function
// should be used instead of a macro to prevent an expression argument
// from being evaluated multiple times.
//
// There are 2 areas where overhead is a major concern: constants and
// permutations.
//
// Constants need to be composed at run time by assembling individual
// elements, very expensive. The cost is proportional to the number of
// different elements therefore use the largest element size possible,
// merge smaller integer elements to 64 bits, and group repeated elements.
//
// Constants with repeating patterns can be optimized with the smaller
// patterns repeated more frequently being more efficient.
//
// Some specific constants can be very efficient. Zero is very efficient,
// 1 and -1 slightly less so.
//
// If an expensive constant is to be reused in the same function it should
// be declared as a local variable defined once and reused.
//
// Permutations can be very expensive if they use a vector control index,
// even if the permutation itself is quite efficient.
// The index is essentially a constant with all the baggage that brings.
// The same rules apply, if an index is to be reused it should be defined
// as a local. This applies specifically to bswap operations.
//
// Permutations that cross 128 bit lanes are typically slower and often need
// a vector control index. If the permutation doesn't need to cross 128 bit
// lanes a shuffle instruction can often be used with an imm control.
//
//////////////////////////////////////////////////////////////
//
// AVX512 512 bit vectors
//
// Other AVX512 extensions that may be required for some functions.
// __AVX512VBMI__ __AVX512VAES__
//
// Used instead if casting.
typedef union
{
__m512i m512;
__m128i m128[4];
uint32_t u32[16];
uint64_t u64[8];
} __attribute__ ((aligned (64))) m512_ovly;
// Move integer to/from element 0 of vector.
#define mm512_mov64_512( n ) _mm512_castsi128_si512( mm128_mov64_128( n ) )
#define mm512_mov32_512( n ) _mm512_castsi128_si512( mm128_mov32_128( n ) )
#define u64_mov512_64( a ) u64_mov128_64( _mm256_castsi512_si128( a ) )
#define u32_mov512_32( a ) u32_mov128_32( _mm256_castsi512_si128( a ) )
// A simple 128 bit permute, using function instead of macro avoids
// problems if the v arg passed as an expression.
static inline __m512i mm512_perm_128( const __m512i v, const int c )
{ return _mm512_shuffle_i64x2( v, v, c ); }
// Concatenate two 256 bit vectors into one 512 bit vector {hi, lo}
#define mm512_concat_256( hi, lo ) \
_mm512_inserti64x4( _mm512_castsi256_si512( lo ), hi, 1 )
#define m512_const_128( v3, v2, v1, v0 ) \
mm512_concat_256( mm256_concat_128( v3, v2 ), \
mm256_concat_128( v1, v0 ) )
// Equivalent of set, assign 64 bit integers to respective 64 bit elements.
// Use stack memory overlay
static inline __m512i m512_const_64( const uint64_t i7, const uint64_t i6,
const uint64_t i5, const uint64_t i4,
const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
union { __m512i m512i;
uint64_t u64[8]; } v;
v.u64[0] = i0; v.u64[1] = i1;
v.u64[2] = i2; v.u64[3] = i3;
v.u64[4] = i4; v.u64[5] = i5;
v.u64[6] = i6; v.u64[7] = i7;
return v.m512i;
}
// Equivalent of set1, broadcast lo element to all elements.
static inline __m512i m512_const1_256( const __m256i v )
{ return _mm512_inserti64x4( _mm512_castsi256_si512( v ), v, 1 ); }
#define m512_const1_128( v ) \
mm512_perm_128( _mm512_castsi128_si512( v ), 0 )
// Integer input argument up to 64 bits
#define m512_const1_i128( i ) \
mm512_perm_128( _mm512_castsi128_si512( mm128_mov64_128( i ) ), 0 )
//#define m512_const1_256( v ) _mm512_broadcast_i64x4( v )
//#define m512_const1_128( v ) _mm512_broadcast_i64x2( v )
#define m512_const1_64( i ) _mm512_broadcastq_epi64( mm128_mov64_128( i ) )
#define m512_const1_32( i ) _mm512_broadcastd_epi32( mm128_mov32_128( i ) )
#define m512_const1_16( i ) _mm512_broadcastw_epi16( mm128_mov32_128( i ) )
#define m512_const1_8( i ) _mm512_broadcastb_epi8 ( mm128_mov32_128( i ) )
#define m512_const2_128( v1, v0 ) \
m512_const1_256( _mm512_inserti64x2( _mm512_castsi128_si512( v0 ), v1, 1 ) )
#define m512_const2_64( i1, i0 ) \
m512_const1_128( m128_const_64( i1, i0 ) )
static inline __m512i m512_const4_64( const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
union { __m512i m512i;
uint64_t u64[8]; } v;
v.u64[0] = v.u64[4] = i0;
v.u64[1] = v.u64[5] = i1;
v.u64[2] = v.u64[6] = i2;
v.u64[3] = v.u64[7] = i3;
return v.m512i;
}
//
// Pseudo constants.
// _mm512_setzero_si512 uses xor instruction. If needed frequently
// in a function is it better to define a register variable (const?)
// initialized to zero.
#define m512_zero _mm512_setzero_si512()
#define m512_one_512 mm512_mov64_512( 1 )
#define m512_one_256 _mm512_inserti64x4( m512_one_512, m256_one_256, 1 )
#define m512_one_128 m512_const1_i128( 1 )
#define m512_one_64 m512_const1_64( 1 )
#define m512_one_32 m512_const1_32( 1 )
#define m512_one_16 m512_const1_16( 1 )
#define m512_one_8 m512_const1_8( 1 )
// use asm to avoid compiler warning for unitialized local
static inline __m512i mm512_neg1_fn()
{
__m512i a;
asm( "vpternlogq $0xff, %0, %0, %0\n\t" : "=x"(a) );
return a;
}
#define m512_neg1 mm512_neg1_fn() // 1 clock
//#define m512_neg1 m512_const1_64( 0xffffffffffffffff ) // 5 clocks
//#define m512_neg1 _mm512_movm_epi64( 0xff ) // 2 clocks
//
// Basic operations without SIMD equivalent
// Bitwise NOT: ~x
static inline __m512i mm512_not( const __m512i x )
{ return _mm512_ternarylogic_epi64( x, x, x, 1 ); }
/*
// Unary negation: -x
#define mm512_negate_64( x ) _mm512_sub_epi64( m512_zero, x )
#define mm512_negate_32( x ) _mm512_sub_epi32( m512_zero, x )
#define mm512_negate_16( x ) _mm512_sub_epi16( m512_zero, x )
*/
//
// Pointer casting
// p = any aligned pointer
// i = scaled array index
// o = scaled address offset
// returns p as pointer to vector
#define castp_m512i(p) ((__m512i*)(p))
// returns *p as vector value
#define cast_m512i(p) (*((__m512i*)(p)))
// returns p[i] as vector value
#define casti_m512i(p,i) (((__m512i*)(p))[(i)])
// returns p+o as pointer to vector
#define casto_m512i(p,o) (((__m512i*)(p))+(o))
//
// Memory functions
// n = number of 512 bit (64 byte) vectors
static inline void memset_zero_512( __m512i *dst, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = m512_zero; }
static inline void memset_512( __m512i *dst, const __m512i a, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
static inline void memcpy_512( __m512i *dst, const __m512i *src, const int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
// Sum 4 values, fewer dependencies than sequential addition.
#define mm512_add4_64( a, b, c, d ) \
_mm512_add_epi64( _mm512_add_epi64( a, b ), _mm512_add_epi64( c, d ) )
#define mm512_add4_32( a, b, c, d ) \
_mm512_add_epi32( _mm512_add_epi32( a, b ), _mm512_add_epi32( c, d ) )
#define mm512_add4_16( a, b, c, d ) \
_mm512_add_epi16( _mm512_add_epi16( a, b ), _mm512_add_epi16( c, d ) )
#define mm512_add4_8( a, b, c, d ) \
_mm512_add_epi8( _mm512_add_epi8( a, b ), _mm512_add_epi8( c, d ) )
//
// Ternary logic uses 8 bit truth table to define any 3 input logical
// expression using any number or combinations of AND, OR, XOR, NOT.
// a ^ b ^ c
#define mm512_xor3( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0x96 )
// legacy convenience only
#define mm512_xor4( a, b, c, d ) _mm512_xor_si512( a, mm512_xor3( b, c, d ) )
// a & b & c
#define mm512_and3( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0x80 )
// a | b | c
#define mm512_or3( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0xfe )
// a ^ ( b & c )
#define mm512_xorand( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0x78 )
// a & ( b ^ c )
#define mm512_andxor( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0x60 )
// a ^ ( b | c )
#define mm512_xoror( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0x1e )
// a ^ ( ~b & c ), xor( a, andnot( b, c ) )
#define mm512_xorandnot( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0xd2 )
// a | ( b & c )
#define mm512_orand( a, b, c ) _mm512_ternarylogic_epi64( a, b, c, 0xf8 )
// Some 2 input operations that don't have their own instruction mnemonic.
// Use with caution, args are not expression safe.
// ~( a | b ), (~a) & (~b)
#define mm512_nor( a, b ) _mm512_ternarylogic_epi64( a, b, b, 0x01 )
// ~( a ^ b ), (~a) ^ b
#define mm512_xnor( a, b ) _mm512_ternarylogic_epi64( a, b, b, 0x81 )
// ~( a & b )
#define mm512_nand( a, b ) _mm512_ternarylogic_epi64( a, b, b, 0xef )
// Bit rotations.
// AVX512F has built-in fixed and variable bit rotation for 64 & 32 bit
// elements and can be called directly.
//
// _mm512_rol_epi64, _mm512_ror_epi64, _mm512_rol_epi32, _mm512_ror_epi32
// _mm512_rolv_epi64, _mm512_rorv_epi64, _mm512_rolv_epi32, _mm512_rorv_epi32
//
// For convenience and consistency with AVX2 macros.
#define mm512_ror_64 _mm512_ror_epi64
#define mm512_rol_64 _mm512_rol_epi64
#define mm512_ror_32 _mm512_ror_epi32
#define mm512_rol_32 _mm512_rol_epi32
//
// Reverse byte order of packed elements, vectorized endian conversion.
#define mm512_bswap_64( v ) \
_mm512_shuffle_epi8( v, \
m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637, \
0x28292a2b2c2d2e2f, 0x2021222324252627, \
0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) )
#define mm512_bswap_32( v ) \
_mm512_shuffle_epi8( v, \
m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233, \
0x2c2d2e2f28292a2b, 0x2425262720212223, \
0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ) )
#define mm512_bswap_16( v ) \
_mm512_shuffle_epi8( v, \
m512_const_64( 0x3e3f3c3d3a3b3839, 0x3637343532333031, \
0x2e2f2c2d2a2b2829, 0x2627242522232021, \
0x1e1f1c1d1a1b1819, 0x1617141512131011, \
0x0e0f0c0d0a0b0809, 0x0607040502030001 ) )
// Source and destination are pointers, may point to same memory.
// 8 lanes of 64 bytes each
#define mm512_block_bswap_64( d, s ) do \
{ \
__m512i ctl = m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637, \
0x28292a2b2c2d2e2f, 0x2021222324252627, \
0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
// 16 lanes of 32 bytes each
#define mm512_block_bswap_32( d, s ) do \
{ \
__m512i ctl = m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233, \
0x2c2d2e2f28292a2b, 0x2425262720212223, \
0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
// Cross-lane shuffles implementing rotation of packed elements.
//
// Rotate elements across entire vector.
static inline __m512i mm512_swap_256( const __m512i v )
{ return _mm512_alignr_epi64( v, v, 4 ); }
#define mm512_shuflr_256( v ) mm512_swap_256
#define mm512_shufll_256( v ) mm512_swap_256
static inline __m512i mm512_shuflr_128( const __m512i v )
{ return _mm512_alignr_epi64( v, v, 2 ); }
static inline __m512i mm512_shufll_128( const __m512i v )
{ return _mm512_alignr_epi64( v, v, 6 ); }
static inline __m512i mm512_shuflr_64( const __m512i v )
{ return _mm512_alignr_epi64( v, v, 1 ); }
static inline __m512i mm512_shufll_64( const __m512i v )
{ return _mm512_alignr_epi64( v, v, 7 ); }
static inline __m512i mm512_shuflr_32( const __m512i v )
{ return _mm512_alignr_epi32( v, v, 1 ); }
static inline __m512i mm512_shufll_32( const __m512i v )
{ return _mm512_alignr_epi32( v, v, 15 ); }
// Generic
static inline __m512i mm512_shuflr_x64( const __m512i v, const int n )
{ return _mm512_alignr_epi64( v, v, n ); }
static inline __m512i mm512_shuflr_x32( const __m512i v, const int n )
{ return _mm512_alignr_epi32( v, v, n ); }
#define mm512_shuflr_16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x0000001F001E001D, 0x001C001B001A0019, \
0x0018001700160015, 0x0014001300120011, \
0x0010000F000E000D, 0x000C000B000A0009, \
0x0008000700060005, 0x0004000300020001 ), v )
#define mm512_shufll_16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001E001D001C001B, 0x001A001900180017, \
0x0016001500140013, 0x001200110010000F, \
0x000E000D000C000B, 0x000A000900080007, \
0x0006000500040003, 0x000200010000001F ), v )
#define mm512_shuflr_8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x003F3E3D3C3B3A39, 0x3837363534333231, \
0x302F2E2D2C2B2A29, 0x2827262524232221, \
0x201F1E1D1C1B1A19. 0x1817161514131211, \
0x100F0E0D0C0B0A09, 0x0807060504030201 ) )
#define mm512_shufll_8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231302F. \
0x2E2D2C2B2A292827, 0x262524232221201F, \
0x1E1D1C1B1A191817, 0x161514131211100F, \
0x0E0D0C0B0A090807, 0x060504030201003F ) )
// 256 bit lanes used only by lyra2, move these there
// Rotate elements within 256 bit lanes of 512 bit vector.
// Swap hi & lo 128 bits in each 256 bit lane
#define mm512_swap256_128( v ) _mm512_permutex_epi64( v, 0x4e )
#define mm512_shuflr256_128 mm512_swap256_128
#define mm512_shufll256_128 mm512_swap256_128
// Rotate 256 bit lanes by one 64 bit element
#define mm512_shuflr256_64( v ) _mm512_permutex_epi64( v, 0x39 )
#define mm512_shufll256_64( v ) _mm512_permutex_epi64( v, 0x93 )
/*
// Rotate 256 bit lanes by one 32 bit element
#define mm512_shuflr256_32( v ) \
_mm512_permutexvar_epi32( m512_const_64( \
0x000000080000000f, 0x0000000e0000000d, \
0x0000000c0000000b, 0x0000000a00000009, \
0x0000000000000007, 0x0000000600000005, \
0x0000000400000003, 0x0000000200000001 ), v )
#define mm512_shufll256_32( v ) \
_mm512_permutexvar_epi32( m512_const_64( \
0x0000000e0000000d, 0x0000000c0000000b, \
0x0000000a00000009, 0x000000080000000f, \
0x0000000600000005, 0x0000000400000003, \
0x0000000200000001, 0x0000000000000007 ), v )
#define mm512_shuflr256_16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x00100001001e001d, 0x001c001b001a0019, \
0x0018001700160015, 0x0014001300120011, \
0x0000000f000e000d, 0x000c000b000a0009, \
0x0008000700060005, 0x0004000300020001 ), v )
#define mm512_shufll256_16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001e001d001c001b, 0x001a001900180017, \
0x0016001500140013, 0x001200110010001f, \
0x000e000d000c000b, 0x000a000900080007, \
0x0006000500040003, 0x000200010000000f ), v )
#define mm512_shuflr256_8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x203f3e3d3c3b3a39, 0x3837363534333231, \
0x302f2e2d2c2b2a29, 0x2827262524232221, \
0x001f1e1d1c1b1a19, 0x1817161514131211, \
0x100f0e0d0c0b0a09, 0x0807060504030201 ) )
#define mm512_shufll256_8( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3e3d3c3b3a393837, 0x363534333231302f, \
0x2e2d2c2b2a292827, 0x262524232221203f, \
0x1e1d1c1b1a191817, 0x161514131211100f, \
0x0e0d0c0b0a090807, 0x060504030201001f ) )
*/
//
// Shuffle/rotate elements within 128 bit lanes of 512 bit vector.
// Limited 2 input, 1 output shuffle, combines shuffle with blend.
// Like most shuffles it's limited to 128 bit lanes and like some shuffles
// destination elements must come from a specific source arg.
#define mm512_shuffle2_64( v1, v2, c ) \
_mm512_castpd_si512( _mm512_shuffle_pd( _mm512_castsi512_pd( v1 ), \
_mm512_castsi512_pd( v2 ), c ) );
#define mm512_shuffle2_32( v1, v2, c ) \
_mm512_castps_si512( _mm512_shuffle_ps( _mm512_castsi512_ps( v1 ), \
_mm512_castsi512_ps( v2 ), c ) );
// Swap 64 bits in each 128 bit lane
#define mm512_swap128_64( v ) _mm512_shuffle_epi32( v, 0x4e )
#define mm512_shuflr128_64 mm512_swap128_64
#define mm512_shufll128_64 mm512_swap128_64
// Rotate 128 bit lanes by one 32 bit element
#define mm512_shuflr128_32( v ) _mm512_shuffle_epi32( v, 0x39 )
#define mm512_shufll128_32( v ) _mm512_shuffle_epi32( v, 0x93 )
// Rotate right 128 bit lanes by c bytes, versatile and just as fast
static inline __m512i mm512_shuflr128_8( const __m512i v, const int c )
{ return _mm512_alignr_epi8( v, v, c ); }
// Rotate byte elements in each 64 or 32 bit lane. Redundant for AVX512, all
// can be done with ror & rol. Defined only for convenience and consistency
// with AVX2 & SSE2 macros.
#define mm512_swap64_32( v ) _mm512_shuffle_epi32( v, 0xb1 )
#define mm512_shuflr64_32 mm512_swap64_32
#define mm512_shufll64_32 mm512_swap64_32
#define mm512_shuflr64_24( v ) _mm512_ror_epi64( v, 24 )
#define mm512_shufll64_24( v ) _mm512_rol_epi64( v, 24 )
#define mm512_shuflr64_16( v ) _mm512_ror_epi64( v, 16 )
#define mm512_shufll64_16( v ) _mm512_rol_epi64( v, 16 )
#define mm512_shuflr64_8( v ) _mm512_ror_epi64( v, 8 )
#define mm512_shufll64_8( v ) _mm512_rol_epi64( v, 8 )
#define mm512_swap32_16( v ) _mm512_ror_epi32( v, 16 )
#define mm512_shuflr32_16 mm512_swap32_16
#define mm512_shufll32_16 mm512_swap32_16
#define mm512_shuflr32_8( v ) _mm512_ror_epi32( v, 8 )
#define mm512_shufll32_8( v ) _mm512_rol_epi32( v, 8 )
#endif // AVX512
#endif // SIMD_512_H__