Files
cpuminer-opt-gpu/algo/blake/blake-hash-4way.c
Jay D Dee 2d2e54f001 v3.7.8
2017-12-30 19:19:46 -05:00

1165 lines
34 KiB
C

/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
/*
* BLAKE implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#if defined (__AVX__)
#include <stddef.h>
#include <string.h>
#include <limits.h>
//#include "sph_blake.h"
#include "blake-hash-4way.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BLAKE
#define SPH_SMALL_FOOTPRINT_BLAKE 1
#endif
#if SPH_SMALL_FOOTPRINT_BLAKE
#define SPH_COMPACT_BLAKE_32 1
#endif
#if SPH_64 && (SPH_SMALL_FOOTPRINT_BLAKE || !SPH_64_TRUE)
#define SPH_COMPACT_BLAKE_64 1
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u32 IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
#if defined (__AVX2__)
static const sph_u64 IV512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
#endif
#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64
static const unsigned sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
/*
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0
*/
#endif
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#if SPH_COMPACT_BLAKE_32
static const sph_u32 CS[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#endif
#if defined(__AVX2__)
#define CBx(r, i) CBx_(Z ## r ## i)
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#if SPH_COMPACT_BLAKE_64
// not used
static const sph_u64 CB[16] = {
SPH_C64(0x243F6A8885A308D3), SPH_C64(0x13198A2E03707344),
SPH_C64(0xA4093822299F31D0), SPH_C64(0x082EFA98EC4E6C89),
SPH_C64(0x452821E638D01377), SPH_C64(0xBE5466CF34E90C6C),
SPH_C64(0xC0AC29B7C97C50DD), SPH_C64(0x3F84D5B5B5470917),
SPH_C64(0x9216D5D98979FB1B), SPH_C64(0xD1310BA698DFB5AC),
SPH_C64(0x2FFD72DBD01ADFB7), SPH_C64(0xB8E1AFED6A267E96),
SPH_C64(0xBA7C9045F12C7F99), SPH_C64(0x24A19947B3916CF7),
SPH_C64(0x0801F2E2858EFC16), SPH_C64(0x636920D871574E69)
};
#endif
#endif
#define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \
do { \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set_epi32( c1, c1, c1, c1 ), m0 ), b ), a ); \
d = mm_rotr_32( _mm_xor_si128( d, a ), 16 ); \
c = _mm_add_epi32( c, d ); \
b = mm_rotr_32( _mm_xor_si128( b, c ), 12 ); \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set_epi32( c0, c0, c0, c0 ), m1 ), b ), a ); \
d = mm_rotr_32( _mm_xor_si128( d, a ), 8 ); \
c = _mm_add_epi32( c, d ); \
b = mm_rotr_32( _mm_xor_si128( b, c ), 7 ); \
} while (0)
#if SPH_COMPACT_BLAKE_32
#define ROUND_S_4WAY(r) do { \
GS_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
CS[sigma[r][0x0]], CS[sigma[r][0x1]], V0, V4, V8, VC); \
GS_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \
CS[sigma[r][0x2]], CS[sigma[r][0x3]], V1, V5, V9, VD); \
GS_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \
CS[sigma[r][0x4]], CS[sigma[r][0x5]], V2, V6, VA, VE); \
GS_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \
CS[sigma[r][0x6]], CS[sigma[r][0x7]], V3, V7, VB, VF); \
GS_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \
CS[sigma[r][0x8]], CS[sigma[r][0x9]], V0, V5, VA, VF); \
GS_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \
CS[sigma[r][0xA]], CS[sigma[r][0xB]], V1, V6, VB, VC); \
GS_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \
CS[sigma[r][0xC]], CS[sigma[r][0xD]], V2, V7, V8, VD); \
GS_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \
CS[sigma[r][0xE]], CS[sigma[r][0xF]], V3, V4, V9, VE); \
} while (0)
#else
#define ROUND_S_4WAY(r) do { \
GS_4WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS_4WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS_4WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS_4WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS_4WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS_4WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS_4WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS_4WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#endif
#if defined (__AVX2__)
#define GB_4WAY(m0, m1, c0, c1, a, b, c, d) do { \
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
_mm256_set_epi64x( c1, c1, c1, c1 ), m0 ), b ), a ); \
d = mm256_rotr_64( _mm256_xor_si256( d, a ), 32 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 25 ); \
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
_mm256_set_epi64x( c0, c0, c0, c0 ), m1 ), b ), a ); \
d = mm256_rotr_64( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 11 ); \
} while (0)
#if SPH_COMPACT_BLAKE_64
// not used
#define ROUND_B_4WAY(r) do { \
GB_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
CB[sigma[r][0x0]], CB[sigma[r][0x1]], V0, V4, V8, VC); \
GB_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \
CB[sigma[r][0x2]], CB[sigma[r][0x3]], V1, V5, V9, VD); \
GB_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \
CB[sigma[r][0x4]], CB[sigma[r][0x5]], V2, V6, VA, VE); \
GB_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \
CB[sigma[r][0x6]], CB[sigma[r][0x7]], V3, V7, VB, VF); \
GB_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \
CB[sigma[r][0x8]], CB[sigma[r][0x9]], V0, V5, VA, VF); \
GB_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \
CB[sigma[r][0xA]], CB[sigma[r][0xB]], V1, V6, VB, VC); \
GB_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \
CB[sigma[r][0xC]], CB[sigma[r][0xD]], V2, V7, V8, VD); \
GB_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \
CB[sigma[r][0xE]], CB[sigma[r][0xF]], V3, V4, V9, VE); \
} while (0)
#else
//current_impl
#define ROUND_B_4WAY(r) do { \
GB_4WAY(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \
GB_4WAY(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \
GB_4WAY(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \
GB_4WAY(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \
GB_4WAY(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \
GB_4WAY(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \
GB_4WAY(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \
GB_4WAY(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \
} while (0)
#endif
#endif
#define DECL_STATE32_4WAY \
__m128i H0, H1, H2, H3, H4, H5, H6, H7; \
__m128i S0, S1, S2, S3; \
sph_u32 T0, T1;
#define READ_STATE32_4WAY(state) do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
S0 = (state)->S[0]; \
S1 = (state)->S[1]; \
S2 = (state)->S[2]; \
S3 = (state)->S[3]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32_4WAY(state) do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->S[0] = S0; \
(state)->S[1] = S1; \
(state)->S[2] = S2; \
(state)->S[3] = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
//#define BLAKE32_ROUNDS 8
#ifndef BLAKE32_ROUNDS
#define BLAKE32_ROUNDS 14
#endif
#if SPH_COMPACT_BLAKE_32
#define COMPRESS32_4WAY do { \
__m128i M[16]; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
unsigned r; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \
VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \
VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ) \
, _mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
M[0x0] = mm_byteswap_32( *(buf + 0) ); \
M[0x1] = mm_byteswap_32( *(buf + 1) ); \
M[0x2] = mm_byteswap_32( *(buf + 2) ); \
M[0x3] = mm_byteswap_32( *(buf + 3) ); \
M[0x4] = mm_byteswap_32( *(buf + 4) ); \
M[0x5] = mm_byteswap_32( *(buf + 5) ); \
M[0x6] = mm_byteswap_32( *(buf + 6) ); \
M[0x7] = mm_byteswap_32( *(buf + 7) ); \
M[0x8] = mm_byteswap_32( *(buf + 8) ); \
M[0x9] = mm_byteswap_32( *(buf + 9) ); \
M[0xA] = mm_byteswap_32( *(buf + 10) ); \
M[0xB] = mm_byteswap_32( *(buf + 11) ); \
M[0xC] = mm_byteswap_32( *(buf + 12) ); \
M[0xD] = mm_byteswap_32( *(buf + 13) ); \
M[0xE] = mm_byteswap_32( *(buf + 14) ); \
M[0xF] = mm_byteswap_32( *(buf + 15) ); \
for (r = 0; r < BLAKE32_ROUNDS; r ++) \
ROUND_S_4WAY(r); \
H0 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S0, V0 ), V8 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S1, V1 ), V9 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S2, V2 ), VA ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S3, V3 ), VB ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S0, V4 ), VC ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S1, V5 ), VD ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S2, V6 ), VE ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S3, V7 ), VF ), H7 ); \
} while (0)
#else
// current impl
#define COMPRESS32_4WAY do { \
__m128i M0, M1, M2, M3, M4, M5, M6, M7; \
__m128i M8, M9, MA, MB, MC, MD, ME, MF; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \
VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \
VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
M0 = mm_byteswap_32( * buf ); \
M1 = mm_byteswap_32( *(buf+1) ); \
M2 = mm_byteswap_32( *(buf+2) ); \
M3 = mm_byteswap_32( *(buf+3) ); \
M4 = mm_byteswap_32( *(buf+4) ); \
M5 = mm_byteswap_32( *(buf+5) ); \
M6 = mm_byteswap_32( *(buf+6) ); \
M7 = mm_byteswap_32( *(buf+7) ); \
M8 = mm_byteswap_32( *(buf+8) ); \
M9 = mm_byteswap_32( *(buf+9) ); \
MA = mm_byteswap_32( *(buf+10) ); \
MB = mm_byteswap_32( *(buf+11) ); \
MC = mm_byteswap_32( *(buf+12) ); \
MD = mm_byteswap_32( *(buf+13) ); \
ME = mm_byteswap_32( *(buf+14) ); \
MF = mm_byteswap_32( *(buf+15) ); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
ROUND_S_4WAY(4); \
ROUND_S_4WAY(5); \
ROUND_S_4WAY(6); \
ROUND_S_4WAY(7); \
if (BLAKE32_ROUNDS == 14) { \
ROUND_S_4WAY(8); \
ROUND_S_4WAY(9); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
} \
H0 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( V8, V0 ), S0 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( V9, V1 ), S1 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VA, V2 ), S2 ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VB, V3 ), S3 ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VC, V4 ), S0 ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VD, V5 ), S1 ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VE, V6 ), S2 ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VF, V7 ), S3 ), H7 ); \
} while (0)
#endif
#if defined (__AVX2__)
#define DECL_STATE64_4WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
sph_u64 T0, T1;
#define READ_STATE64_4WAY(state) do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
S0 = (state)->S[0]; \
S1 = (state)->S[1]; \
S2 = (state)->S[2]; \
S3 = (state)->S[3]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE64_4WAY(state) do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->S[0] = S0; \
(state)->S[1] = S1; \
(state)->S[2] = S2; \
(state)->S[3] = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#if SPH_COMPACT_BLAKE_64
// not used
#define COMPRESS64_4WAY do { \
__m256i M[16]; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
unsigned r; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
M[0x0] = mm256_byteswap_64( *(buf+0) ); \
M[0x1] = mm256_byteswap_64( *(buf+1) ); \
M[0x2] = mm256_byteswap_64( *(buf+2) ); \
M[0x3] = mm256_byteswap_64( *(buf+3) ); \
M[0x4] = mm256_byteswap_64( *(buf+4) ); \
M[0x5] = mm256_byteswap_64( *(buf+5) ); \
M[0x6] = mm256_byteswap_64( *(buf+6) ); \
M[0x7] = mm256_byteswap_64( *(buf+7) ); \
M[0x8] = mm256_byteswap_64( *(buf+8) ); \
M[0x9] = mm256_byteswap_64( *(buf+9) ); \
M[0xA] = mm256_byteswap_64( *(buf+10) ); \
M[0xB] = mm256_byteswap_64( *(buf+11) ); \
M[0xC] = mm256_byteswap_64( *(buf+12) ); \
M[0xD] = mm256_byteswap_64( *(buf+13) ); \
M[0xE] = mm256_byteswap_64( *(buf+14) ); \
M[0xF] = mm256_byteswap_64( *(buf+15) ); \
for (r = 0; r < 16; r ++) \
ROUND_B_4WAY(r); \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
H4 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
H5 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
H6 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
H7 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
} while (0)
#else
//current impl
#define COMPRESS64_4WAY do { \
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
M0 = mm256_byteswap_64( *(buf + 0) ); \
M1 = mm256_byteswap_64( *(buf + 1) ); \
M2 = mm256_byteswap_64( *(buf + 2) ); \
M3 = mm256_byteswap_64( *(buf + 3) ); \
M4 = mm256_byteswap_64( *(buf + 4) ); \
M5 = mm256_byteswap_64( *(buf + 5) ); \
M6 = mm256_byteswap_64( *(buf + 6) ); \
M7 = mm256_byteswap_64( *(buf + 7) ); \
M8 = mm256_byteswap_64( *(buf + 8) ); \
M9 = mm256_byteswap_64( *(buf + 9) ); \
MA = mm256_byteswap_64( *(buf + 10) ); \
MB = mm256_byteswap_64( *(buf + 11) ); \
MC = mm256_byteswap_64( *(buf + 12) ); \
MD = mm256_byteswap_64( *(buf + 13) ); \
ME = mm256_byteswap_64( *(buf + 14) ); \
MF = mm256_byteswap_64( *(buf + 15) ); \
ROUND_B_4WAY(0); \
ROUND_B_4WAY(1); \
ROUND_B_4WAY(2); \
ROUND_B_4WAY(3); \
ROUND_B_4WAY(4); \
ROUND_B_4WAY(5); \
ROUND_B_4WAY(6); \
ROUND_B_4WAY(7); \
ROUND_B_4WAY(8); \
ROUND_B_4WAY(9); \
ROUND_B_4WAY(0); \
ROUND_B_4WAY(1); \
ROUND_B_4WAY(2); \
ROUND_B_4WAY(3); \
ROUND_B_4WAY(4); \
ROUND_B_4WAY(5); \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
H4 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
H5 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
H6 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
H7 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
} while (0)
#endif
#endif
static const sph_u32 salt_zero_small[4] = { 0, 0, 0, 0 };
static void
blake32_4way_init( blake_4way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt)
{
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm_set1_epi32( iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm_set1_epi32( salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
static void
blake32_4way( blake_4way_small_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;
__m128i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_4WAY
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_128( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_4WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_128( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
T1 = SPH_T32(T1 + 1);
COMPRESS32_4WAY;
ptr = 0;
}
}
WRITE_STATE32_4WAY(sc);
sc->ptr = ptr;
}
static void
blake32_4way_close( blake_4way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
union {
__m128i buf[16];
sph_u32 dummy;
} u;
size_t ptr, k;
unsigned bit_len;
sph_u32 th, tl;
__m128i *out;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
// unsigned z = 0x80 >> n;
// unsigned zz = ((ub & -z) | z) & 0xFF;
// u.buf[ptr>>2] = _mm_set_epi32( zz, zz, zz, zz );
u.buf[ptr>>2] = _mm_set1_epi32( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
}
else
sc->T0 -= 512 - bit_len;
// if ( ptr <= 48 )
if ( ptr <= 52 )
{
memset_zero_128( u.buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
// memset_zero_128( u.buf + (ptr>>2) + 1, (48 - ptr) >> 2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm_or_si128( u.buf[52>>2],
_mm_set1_epi32( 0x010000000 ) );
*(u.buf+(56>>2)) = mm_byteswap_32( _mm_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm_byteswap_32( _mm_set1_epi32( tl ) );
blake32_4way( sc, u.buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_128( u.buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_4way( sc, u.buf + (ptr>>2), 64 - ptr );
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
memset_zero_128( u.buf, 56>>2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm_set1_epi32( 0x010000000 );
*(u.buf+(56>>2)) = mm_byteswap_32( _mm_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm_byteswap_32( _mm_set1_epi32( tl ) );
blake32_4way( sc, u.buf, 64 );
}
out = (__m128i*)dst;
for ( k = 0; k < out_size_w32; k++ )
out[k] = mm_byteswap_32( sc->H[k] );
// out[k] = sc->H[k];
}
#if defined (__AVX2__)
static const sph_u64 salt_zero_big[4] = { 0, 0, 0, 0 };
static void
blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
const sph_u64 *salt )
{
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm256_set_epi64x( iv[i], iv[i], iv[i], iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm256_set_epi64x( salt[i], salt[i], salt[i], salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
static void
blake64_4way( blake_4way_big_context *sc, const void *data, size_t len)
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
size_t ptr;
DECL_STATE64_4WAY
const int buf_size = 128; // sizeof/8
buf = sc->buf;
ptr = sc->ptr;
if ( len < (buf_size - ptr) )
{
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE64_4WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if (ptr == buf_size )
{
if ((T0 = SPH_T64(T0 + 1024)) < 1024)
T1 = SPH_T64(T1 + 1);
COMPRESS64_4WAY;
ptr = 0;
}
}
WRITE_STATE64_4WAY(sc);
sc->ptr = ptr;
}
static void
blake64_4way_close( blake_4way_big_context *sc,
unsigned ub, unsigned n, void *dst, size_t out_size_w64)
{
union {
__m256i buf[16];
sph_u64 dummy;
} u;
size_t ptr, k;
unsigned bit_len;
uint64_t z, zz;
sph_u64 th, tl;
__m256i *out;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
z = 0x80 >> n;
zz = ((ub & -z) | z) & 0xFF;
u.buf[ptr>>3] = _mm256_set_epi64x( zz, zz, zz, zz );
tl = sc->T0 + bit_len;
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
}
else
{
sc->T0 -= 1024 - bit_len;
}
if ( ptr <= 104 )
{
memset_zero_256( u.buf + (ptr>>3) + 1, (104-ptr) >> 3 );
if ( out_size_w64 == 8 )
u.buf[(104>>3)] = _mm256_or_si256( u.buf[(104>>3)],
_mm256_set_epi64x( 0x0100000000000000,
0x0100000000000000,
0x0100000000000000,
0x0100000000000000 ) );
*(u.buf+(112>>3)) = mm256_byteswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(u.buf+(120>>3)) = mm256_byteswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
blake64_4way( sc, u.buf + (ptr>>3), 128 - ptr );
}
else
{
memset_zero_256( u.buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
blake64_4way( sc, u.buf + (ptr>>3), 128 - ptr );
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF);
memset_zero_256( u.buf, 112>>3 );
if ( out_size_w64 == 8 )
u.buf[104>>3] = _mm256_set_epi64x( 0x0100000000000000,
0x0100000000000000,
0x0100000000000000,
0x0100000000000000 );
*(u.buf+(112>>3)) = mm256_byteswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(u.buf+(120>>3)) = mm256_byteswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
blake64_4way( sc, u.buf, 128 );
}
out = (__m256i*)dst;
for ( k = 0; k < out_size_w64; k++ )
out[k] = mm256_byteswap_64( sc->H[k] );
}
#endif
void
blake256_4way_init(void *cc)
{
blake32_4way_init(cc, IV256, salt_zero_small);
}
void
blake256_4way(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
void
blake256_4way_close(void *cc, void *dst)
{
blake256_4way_addbits_and_close(cc, 0, 0, dst);
}
void
blake256_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake32_4way_close(cc, ub, n, dst, 8);
}
#if defined (__AVX2__)
void
blake512_4way_init(void *cc)
{
blake64_4way_init(cc, IV512, salt_zero_big);
}
void
blake512_4way(void *cc, const void *data, size_t len)
{
blake64_4way(cc, data, len);
}
void
blake512_4way_close(void *cc, void *dst)
{
blake512_4way_addbits_and_close(cc, 0, 0, dst);
}
void
blake512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake64_4way_close(cc, ub, n, dst, 8);
}
#endif
#ifdef __cplusplus
}
#endif
#endif