Files
cpuminer-opt-gpu/algo/x16/x16r-4way.c
Jay D Dee 1d9341ee92 v25.1
2024-12-30 21:33:04 -05:00

1372 lines
53 KiB
C

/**
* x16r algo implementation
*
* Implementation by tpruvot@github Jan 2018
* Optimized by https://github.com/JayDDee/ Jan 2018
*/
#include "x16r-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// The hash and prehash code is shared among x16r, x16s, x16rt, and x21s.
// The generic function performs the x16 hash as per the hash order
// and produces a 512 bit intermediate hash which needs to be converted
// to 256 bit final hash by a wrapper function.
#if defined (X16R_8WAY)
// Perform midstate prehash of hash functions with block size <= 72 bytes,
// 76 bytes for hash functions that operate on 32 bit data.
void x16r_8way_prehash( void *vdata, void *pdata, const char *hash_order )
{
uint32_t vdata2[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
const char elem = hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
jh512_8way_init( &x16r_ctx.jh );
jh512_8way_update( &x16r_ctx.jh, vdata, 64 );
break;
case KECCAK:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
keccak512_8way_init( &x16r_ctx.keccak );
keccak512_8way_update( &x16r_ctx.keccak, vdata, 72 );
break;
case SKEIN:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_init( &x16r_ctx.skein );
skein512_8way_update( &x16r_ctx.skein, vdata, 64 );
break;
case LUFFA:
{
hashState_luffa ctx_luffa;
v128_bswap32_80( edata, pdata );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
init_luffa( &ctx_luffa, 512 );
update_luffa( &ctx_luffa, (const BitSequence*)edata, 64 );
intrlv_4x128( x16r_ctx.luffa.buffer, ctx_luffa.buffer,
ctx_luffa.buffer, ctx_luffa.buffer, ctx_luffa.buffer, 512 );
intrlv_4x128( x16r_ctx.luffa.chainv, ctx_luffa.chainv,
ctx_luffa.chainv, ctx_luffa.chainv, ctx_luffa.chainv, 1280 );
x16r_ctx.luffa.hashbitlen = ctx_luffa.hashbitlen;
x16r_ctx.luffa.rembytes = ctx_luffa.rembytes;
}
break;
case CUBEHASH:
{
cubehashParam ctx_cube;
v128_bswap32_80( edata, pdata );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
cubehashInit( &ctx_cube, 512, 16, 32 );
cubehashUpdate( &ctx_cube, (const byte*)edata, 64 );
x16r_ctx.cube.hashlen = ctx_cube.hashlen;
x16r_ctx.cube.rounds = ctx_cube.rounds;
x16r_ctx.cube.blocksize = ctx_cube.blocksize;
x16r_ctx.cube.pos = ctx_cube.pos;
intrlv_4x128( x16r_ctx.cube.h, ctx_cube.x, ctx_cube.x, ctx_cube.x,
ctx_cube.x, 1024 );
}
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
hamsi512_8way_init( &x16r_ctx.hamsi );
hamsi512_8way_update( &x16r_ctx.hamsi, vdata, 72 );
break;
case FUGUE:
v128_bswap32_80( edata, pdata );
fugue512_init( &x16r_ctx.fugue );
fugue512_update( &x16r_ctx.fugue, edata, 76 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
case SHABAL:
mm256_bswap32_intrlv80_8x32( vdata2, pdata );
shabal512_8way_init( &x16r_ctx.shabal );
shabal512_8way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_8x32_8x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
v128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
default:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
}
}
// Perform the full x16r hash and returns 512 bit intermediate hash.
// Called by wrapper hash function to optionally continue hashing and
// convert to final hash.
int x16r_8way_hash_generic( void* output, const void* input, int thrid,
const char *hash_order, const int func_count )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (16)));
uint32_t hash1[20] __attribute__ ((aligned (16)));
uint32_t hash2[20] __attribute__ ((aligned (16)));
uint32_t hash3[20] __attribute__ ((aligned (16)));
uint32_t hash4[20] __attribute__ ((aligned (16)));
uint32_t hash5[20] __attribute__ ((aligned (16)));
uint32_t hash6[20] __attribute__ ((aligned (16)));
uint32_t hash7[20] __attribute__ ((aligned (16)));
x16r_8way_context_overlay ctx;
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
void *in4 = (void*) hash4;
void *in5 = (void*) hash5;
void *in6 = (void*) hash6;
void *in7 = (void*) hash7;
int size = 80;
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
input, 640 );
for ( int i = 0; i < func_count; i++ )
{
const char elem = hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_8way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
blake512_8way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5,
hash6, hash7, vhash );
break;
case BMW:
bmw512_8way_init( &ctx.bmw );
if ( i == 0 )
bmw512_8way_update( &ctx.bmw, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
bmw512_8way_update( &ctx.bmw, vhash, size );
}
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case GROESTL:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
groestl512_4way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
groestl512_4way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)in4, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)in5, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)in6, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)in7, size<<3 );
#endif
break;
case JH:
if ( i == 0 )
jh512_8way_update( &ctx.jh, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, size );
}
jh512_8way_close( &ctx.jh, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case KECCAK:
if ( i == 0 )
keccak512_8way_update( &ctx.keccak, input + (72<<3), 8 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, size );
}
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case SKEIN:
if ( i == 0 )
skein512_8way_update( &ctx.skein, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, size );
}
skein512_8way_close( &ctx.skein, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case LUFFA:
if ( i == 0 )
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
cube_4way_update_close( &ctx.cube, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
cube_4way_update_close( &ctx.cube, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
cube_4way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
cube_4way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
break;
case SHAVITE:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
shavite512_full( &ctx.shavite, hash4, in4, size );
shavite512_full( &ctx.shavite, hash5, in5, size );
shavite512_full( &ctx.shavite, hash6, in6, size );
shavite512_full( &ctx.shavite, hash7, in7, size );
#endif
break;
case SIMD:
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
break;
case ECHO:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
echo_full( &ctx.echo, (BitSequence *)hash4, 512,
(const BitSequence *)in4, size );
echo_full( &ctx.echo, (BitSequence *)hash5, 512,
(const BitSequence *)in5, size );
echo_full( &ctx.echo, (BitSequence *)hash6, 512,
(const BitSequence *)in6, size );
echo_full( &ctx.echo, (BitSequence *)hash7, 512,
(const BitSequence *)in7, size );
#endif
break;
case HAMSI:
if ( i == 0 )
hamsi512_8way_update( &ctx.hamsi, input + (72<<3), 8 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, size );
}
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case FUGUE:
if ( i == 0 )
{
fugue512_update( &ctx.fugue, in0 + 76, 4 );
fugue512_final( &ctx.fugue, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in1 + 76, 4 );
fugue512_final( &ctx.fugue, hash1 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in2 + 76, 4 );
fugue512_final( &ctx.fugue, hash2 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in3 + 76, 4 );
fugue512_final( &ctx.fugue, hash3 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in4 + 76, 4 );
fugue512_final( &ctx.fugue, hash4 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in5 + 76, 4 );
fugue512_final( &ctx.fugue, hash5 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in6 + 76, 4 );
fugue512_final( &ctx.fugue, hash6 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in7 + 76, 4 );
fugue512_final( &ctx.fugue, hash7 );
}
else
{
fugue512_full( &ctx.fugue, hash0, in0, size );
fugue512_full( &ctx.fugue, hash1, in1, size );
fugue512_full( &ctx.fugue, hash2, in2, size );
fugue512_full( &ctx.fugue, hash3, in3, size );
fugue512_full( &ctx.fugue, hash4, in4, size );
fugue512_full( &ctx.fugue, hash5, in5, size );
fugue512_full( &ctx.fugue, hash6, in6, size );
fugue512_full( &ctx.fugue, hash7, in7, size );
}
break;
case SHABAL:
intrlv_8x32( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
if ( i == 0 )
shabal512_8way_update( &ctx.shabal, vhash + (16<<3), 16 );
else
{
shabal512_8way_init( &ctx.shabal );
shabal512_8way_update( &ctx.shabal, vhash, size );
}
shabal512_8way_close( &ctx.shabal, vhash );
dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in4 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in5 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in6 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, in7 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
}
else
{
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
sph_whirlpool512_full( &ctx.whirlpool, hash4, in4, size );
sph_whirlpool512_full( &ctx.whirlpool, hash5, in5, size );
sph_whirlpool512_full( &ctx.whirlpool, hash6, in6, size );
sph_whirlpool512_full( &ctx.whirlpool, hash7, in7, size );
}
break;
case SHA_512:
sha512_8way_init( &ctx.sha512 );
if ( i == 0 )
sha512_8way_update( &ctx.sha512, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
sha512_8way_update( &ctx.sha512, vhash, size );
}
sha512_8way_close( &ctx.sha512, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
memcpy( output+256, hash4, 64 );
memcpy( output+320, hash5, 64 );
memcpy( output+384, hash6, 64 );
memcpy( output+448, hash7, 64 );
return 1;
}
// x16-r,-s,-rt wrapper called directly by scanhash to repackage 512 bit
// hash to 256 bit final hash.
int x16r_8way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*8] __attribute__ ((aligned (128)));
if ( !x16r_8way_hash_generic( hash, input, thrid, x16r_hash_order,
X16R_HASH_FUNC_COUNT ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
memcpy( output+128, hash+256, 32 );
memcpy( output+160, hash+320, 32 );
memcpy( output+192, hash+384, 32 );
memcpy( output+224, hash+448, 32 );
return 1;
}
// x16r only
int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const int thr_id = mythr->id;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0cff;
static __thread uint32_t saved_height = UINT32_MAX;
if ( work->height != saved_height )
{
vdata[1] = bswap_32( pdata[1] );
vdata[2] = bswap_32( pdata[2] );
saved_height = work->height;
x16_r_s_getAlgoString( (const uint8_t*)(&vdata[1]), x16r_hash_order );
if ( !opt_quiet && !thr_id )
applog( LOG_INFO, "hash order %s", x16r_hash_order );
}
x16r_8way_prehash( vdata, pdata, x16r_hash_order );
*noncev = mm512_intrlv_blend_32( _mm512_set_epi32(
n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
if ( x16r_8way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
_mm512_set1_epi64( 0x0000000800000000 ) );
n += 8;
} while ( likely( ( n < last_nonce ) && !(*restart) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (X16R_4WAY)
void x16r_4way_prehash( void *vdata, void *pdata, const char *hash_order )
{
uint32_t vdata2[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
const char elem = hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
jh512_4way_init( &x16r_ctx.jh );
jh512_4way_update( &x16r_ctx.jh, vdata, 64 );
break;
case KECCAK:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
keccak512_4way_init( &x16r_ctx.keccak );
keccak512_4way_update( &x16r_ctx.keccak, vdata, 72 );
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_prehash64( &x16r_ctx.skein, vdata );
break;
case LUFFA:
{
hashState_luffa ctx_luffa;
v128_bswap32_80( edata, pdata );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
init_luffa( &ctx_luffa, 512 );
update_luffa( &ctx_luffa, (const BitSequence*)edata, 64 );
intrlv_2x128( x16r_ctx.luffa.buffer, ctx_luffa.buffer,
ctx_luffa.buffer, 512 );
intrlv_2x128( x16r_ctx.luffa.chainv, ctx_luffa.chainv,
ctx_luffa.chainv, 1280 );
x16r_ctx.luffa.hashbitlen = ctx_luffa.hashbitlen;
x16r_ctx.luffa.rembytes = ctx_luffa.rembytes;
}
break;
case CUBEHASH:
{
cubehashParam ctx_cube;
v128_bswap32_80( edata, pdata );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
cubehashInit( &ctx_cube, 512, 16, 32 );
cubehashUpdate( &ctx_cube, (const byte*)edata, 64 );
x16r_ctx.cube.hashlen = ctx_cube.hashlen;
x16r_ctx.cube.rounds = ctx_cube.rounds;
x16r_ctx.cube.blocksize = ctx_cube.blocksize;
x16r_ctx.cube.pos = ctx_cube.pos;
intrlv_2x128( x16r_ctx.cube.h, ctx_cube.x, ctx_cube.x, 1024 );
}
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
hamsi512_4way_init( &x16r_ctx.hamsi );
hamsi512_4way_update( &x16r_ctx.hamsi, vdata, 72 );
break;
case FUGUE:
v128_bswap32_80( edata, pdata );
fugue512_init( &x16r_ctx.fugue );
fugue512_update( &x16r_ctx.fugue, edata, 76 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case SHABAL:
v128_bswap32_intrlv80_4x32( vdata2, pdata );
shabal512_4way_init( &x16r_ctx.shabal );
shabal512_4way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_4x32_4x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
v128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
default:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
}
}
int x16r_4way_hash_generic( void* output, const void* input, int thrid,
const char *hash_order, const int func_count )
{
uint32_t vhash[20*4] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (32)));
uint32_t hash1[20] __attribute__ ((aligned (32)));
uint32_t hash2[20] __attribute__ ((aligned (32)));
uint32_t hash3[20] __attribute__ ((aligned (32)));
x16r_4way_context_overlay ctx;
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
int size = 80;
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
for ( int i = 0; i < func_count; i++ )
{
const char elem = hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_4way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
blake512_4way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case BMW:
bmw512_4way_init( &ctx.bmw );
if ( i == 0 )
bmw512_4way_update( &ctx.bmw, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
bmw512_4way_update( &ctx.bmw, vhash, size );
}
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case GROESTL:
#if defined(__VAES__)
intrlv_2x128( vhash, in0, in1, size<<3 );
groestl512_2way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
groestl512_2way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
#else
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
#endif
break;
case JH:
if ( i == 0 )
jh512_4way_update( &ctx.jh, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, size );
}
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case KECCAK:
if ( i == 0 )
keccak512_4way_update( &ctx.keccak, input + (72<<2), 8 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, size );
}
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case SKEIN:
if ( i == 0 )
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way_full( &ctx.skein, vhash, vhash, size );
}
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case LUFFA:
if ( i == 0 )
{
intrlv_2x128( vhash, hash0, hash1, 640 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, hash2, hash3, 640 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
}
else
{
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
intrlv_2x128( vhash, in0, in1, size<<3 );
cube_2way_update_close( &ctx.cube, vhash,
vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
intrlv_2x128( vhash, in2, in3, size<<3 );
cube_2way_update_close( &ctx.cube, vhash,
vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
}
else
{
intrlv_2x128( vhash, in0, in1, size<<3 );
cube_2way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
cube_2way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
}
break;
case SHAVITE:
#if defined(__VAES__)
intrlv_2x128( vhash, in0, in1, size<<3 );
shavite512_2way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
shavite512_2way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
#else
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
#endif
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
simd512_2way_full( &ctx.simd, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
simd512_2way_full( &ctx.simd, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
break;
case ECHO:
#if defined(__VAES__)
intrlv_2x128( vhash, in0, in1, size<<3 );
echo_2way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
echo_2way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
#else
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
#endif
break;
case HAMSI:
if ( i == 0 )
hamsi512_4way_update( &ctx.hamsi, input + (72<<2), 8 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, size );
}
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case FUGUE:
if ( i == 0 )
{
fugue512_update( &ctx.fugue, in0 + 76, 4 );
fugue512_final( &ctx.fugue, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in1 + 76, 4 );
fugue512_final( &ctx.fugue, hash1 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in2 + 76, 4 );
fugue512_final( &ctx.fugue, hash2 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in3 + 76, 4 );
fugue512_final( &ctx.fugue, hash3 );
}
else
{
fugue512_full( &ctx.fugue, hash0, in0, size );
fugue512_full( &ctx.fugue, hash1, in1, size );
fugue512_full( &ctx.fugue, hash2, in2, size );
fugue512_full( &ctx.fugue, hash3, in3, size );
}
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
if ( i == 0 )
shabal512_4way_update( &ctx.shabal, vhash + (16<<2), 16 );
else
{
shabal512_4way_init( &ctx.shabal );
shabal512_4way_update( &ctx.shabal, vhash, size );
}
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
}
else
{
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
}
break;
case SHA_512:
sha512_4way_init( &ctx.sha512 );
if ( i == 0 )
sha512_4way_update( &ctx.sha512, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way_update( &ctx.sha512, vhash, size );
}
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
return 1;
}
int x16r_4way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*4] __attribute__ ((aligned (64)));
if ( !x16r_4way_hash_generic( hash, input, thrid, x16r_hash_order,
X16R_HASH_FUNC_COUNT ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
return 1;
}
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
if ( bench ) ptarget[7] = 0x0cff;
static __thread uint32_t saved_height = UINT32_MAX;
if ( work->height != saved_height )
{
vdata[1] = bswap_32( pdata[1] );
vdata[2] = bswap_32( pdata[2] );
saved_height = work->height;
x16_r_s_getAlgoString( (const uint8_t*)(&vdata[1]), x16r_hash_order );
if ( !opt_quiet && !thr_id )
applog( LOG_INFO, "hash order %s", x16r_hash_order );
}
x16r_4way_prehash( vdata, pdata, x16r_hash_order );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
if ( x16r_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
_mm256_set1_epi64x( 0x0000000400000000 ) );
n += 4;
} while ( likely( ( n < last_nonce ) && !(*restart) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (X16R_2WAY)
void x16r_2x64_prehash( void *vdata, void *pdata, const char *hash_order )
{
uint32_t edata[20] __attribute__ ((aligned (64)));
const char elem = hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
v128_bswap32_intrlv80_2x64( vdata, pdata );
jh512_2x64_init( &x16r_ctx.jh );
jh512_2x64_update( &x16r_ctx.jh, vdata, 64 );
break;
case KECCAK:
v128_bswap32_intrlv80_2x64( vdata, pdata );
keccak512_2x64_init( &x16r_ctx.keccak );
keccak512_2x64_update( &x16r_ctx.keccak, vdata, 72 );
break;
case SKEIN:
v128_bswap32_intrlv80_2x64( vdata, pdata );
skein512_2x64_prehash64( &x16r_ctx.skein, vdata );
break;
case LUFFA:
{
v128_bswap32_80( edata, pdata );
init_luffa( &x16r_ctx.luffa, 512 );
update_luffa( &x16r_ctx.luffa, edata, 64 );
intrlv_2x64( vdata, edata, edata, 640 );
}
break;
case CUBEHASH:
{
v128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, edata, 64 );
intrlv_2x64( vdata, edata, edata, 640 );
}
break;
case HAMSI:
#if defined(__SSE4_2__) || defined(__ARM_NEON)
v128_bswap32_intrlv80_2x64( vdata, pdata );
hamsi512_2x64_init( &x16r_ctx.hamsi );
hamsi512_2x64_update( &x16r_ctx.hamsi, vdata, 72 );
#else
v128_bswap32_80( edata, pdata );
sph_hamsi512_init( &x16r_ctx.hamsi );
sph_hamsi512( &x16r_ctx.hamsi, edata, 72 );
intrlv_2x64( vdata, edata, edata, 640 );
#endif
break;
case FUGUE:
v128_bswap32_80( edata, pdata );
#if defined(__AES__) || defined(__ARM_FEATURE_AES)
fugue512_init( &x16r_ctx.fugue );
fugue512_update( &x16r_ctx.fugue, edata, 76 );
#else
sph_fugue512_init( &x16r_ctx.fugue );
sph_fugue512( &x16r_ctx.fugue, edata, 76 );
#endif
intrlv_2x64( vdata, edata, edata, 640 );
break;
case SHABAL:
v128_bswap32_80( edata, pdata );
sph_shabal512_init( &x16r_ctx.shabal );
sph_shabal512( &x16r_ctx.shabal, edata, 64);
intrlv_2x64( vdata, edata, edata, 640 );
break;
case WHIRLPOOL:
v128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_2x64( vdata, edata, edata, 640 );
break;
default:
v128_bswap32_intrlv80_2x64( vdata, pdata );
}
}
int x16r_2x64_hash_generic( void* output, const void* input, int thrid,
const char *hash_order, const int func_count )
{
uint32_t vhash[20*2] __attribute__ ((aligned (64)));
uint32_t hash0[20] __attribute__ ((aligned (32)));
uint32_t hash1[20] __attribute__ ((aligned (32)));
x16r_2x64_context_overlay ctx;
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
int size = 80;
dintrlv_2x64( hash0, hash1, input, 640 );
for ( int i = 0; i < func_count; i++ )
{
const char elem = hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_2x64_full( &ctx.blake, vhash, input, size );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
blake512_2x64_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
case BMW:
bmw512_2x64_init( &ctx.bmw );
if ( i == 0 )
bmw512_2x64_update( &ctx.bmw, input, size );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
bmw512_2x64_update( &ctx.bmw, vhash, size );
}
bmw512_2x64_close( &ctx.bmw, vhash );
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
case GROESTL:
#if defined(__AES__) || defined(__ARM_FEATURE_AES)
groestl512_full( &ctx.groestl, hash0, in0, size<<3 );
groestl512_full( &ctx.groestl, hash1, in1, size<<3 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in0, size );
sph_groestl512_close( &ctx.groestl, hash0 );
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in1, size );
sph_groestl512_close( &ctx.groestl, hash1 );
#endif
break;
case JH:
if ( i == 0 )
jh512_2x64_update( &ctx.jh, input + (64*2), 16 );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
jh512_2x64_init( &ctx.jh );
jh512_2x64_update( &ctx.jh, vhash, size );
}
jh512_2x64_close( &ctx.jh, vhash );
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
case KECCAK:
if ( i == 0 )
keccak512_2x64_update( &ctx.keccak, input + (72*2), 8 );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
keccak512_2x64_init( &ctx.keccak );
keccak512_2x64_update( &ctx.keccak, vhash, size );
}
keccak512_2x64_close( &ctx.keccak, vhash );
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
case SKEIN:
if ( i == 0 )
skein512_2x64_final16( &ctx.skein, vhash, input + (64*2) );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
skein512_2x64_full( &ctx.skein, vhash, vhash, size );
}
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
case LUFFA:
if ( i == 0 )
{
update_and_final_luffa( &ctx.luffa, hash0, in0 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa, hash1, in1 + 64, 16 );
}
else
{
luffa_full( &ctx.luffa, hash0, 512, hash0, size );
luffa_full( &ctx.luffa, hash1, 512, hash1, size );
}
break;
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, hash0, in0 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, hash1, in1 + 64, 16 );
}
else
{
cubehash_full( &ctx.cube, hash0, 512, hash0, size );
cubehash_full( &ctx.cube, hash1, 512, hash1, size );
}
break;
case SHAVITE:
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
break;
case SIMD:
simd512_ctx( &ctx.simd, hash0, in0, size );
simd512_ctx( &ctx.simd, hash1, in1, size );
break;
case ECHO:
#if defined(__AES__) || defined(__ARM_FEATURE_AES)
echo_full( &ctx.echo, hash0, 512, in0, size );
echo_full( &ctx.echo, hash1, 512, in1, size );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in0, size );
sph_echo512_close( &ctx.echo, hash0 );
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in1, size );
sph_echo512_close( &ctx.echo, hash1 );
#endif
break;
case HAMSI:
#if defined(__SSE4_2__) || defined(__ARM_NEON)
if ( i == 0 )
hamsi512_2x64_update( &ctx.hamsi, input + (72*2), 8 );
else
{
intrlv_2x64( vhash, hash0, hash1, size<<3 );
hamsi512_2x64_init( &ctx.hamsi );
hamsi512_2x64_update( &ctx.hamsi, vhash, size );
}
hamsi512_2x64_close( &ctx.hamsi, vhash );
dintrlv_2x64( hash0, hash1, vhash, 512 );
#else
if ( i == 0 )
{
sph_hamsi512( &ctx.hamsi, in0 + 72, 8 );
sph_hamsi512_close( &ctx.hamsi, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_hamsi512( &ctx.hamsi, in1 + 72, 8 );
sph_hamsi512_close( &ctx.hamsi, hash1 );
}
else
{
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, hash0, size );
sph_hamsi512_close( &ctx.hamsi, hash0 );
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, hash1, size );
sph_hamsi512_close( &ctx.hamsi, hash1 );
}
#endif
break;
case FUGUE:
#if defined(__AES__) || defined(__ARM_FEATURE_AES)
if ( i == 0 )
{
fugue512_update( &ctx.fugue, in0 + 76, 4 );
fugue512_final( &ctx.fugue, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(hashState_fugue) );
fugue512_update( &ctx.fugue, in1 + 76, 4 );
fugue512_final( &ctx.fugue, hash1 );
}
else
{
fugue512_full( &ctx.fugue, hash0, hash0, size );
fugue512_full( &ctx.fugue, hash1, hash1, size );
}
#else
if ( i == 0 )
{
sph_fugue512( &ctx.fugue, in0 + 76, 4 );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, in1 + 76, 4 );
sph_fugue512_close( &ctx.fugue, hash1 );
}
else
{
sph_fugue512_full( &ctx.fugue, hash0, hash0, size );
sph_fugue512_full( &ctx.fugue, hash1, hash1, size );
}
#endif
break;
case SHABAL:
if ( i == 0 )
{
sph_shabal512( &ctx.shabal, in0 + 64, 16 );
sph_shabal512_close( &ctx.shabal, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_shabal512( &ctx.shabal, in1 + 64, 16 );
sph_shabal512_close( &ctx.shabal, hash1 );
}
else
{
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, hash0, size );
sph_shabal512_close( &ctx.shabal, hash0 );
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, hash1, size );
sph_shabal512_close( &ctx.shabal, hash1 );
}
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
}
else
{
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, size );
}
break;
case SHA_512:
sha512_2x64_init( &ctx.sha512 );
if ( i == 0 )
sha512_2x64_update( &ctx.sha512, input, size );
else
{
intrlv_2x64( vhash, in0, in1, size<<3 );
sha512_2x64_init( &ctx.sha512 );
sha512_2x64_update( &ctx.sha512, vhash, size );
}
sha512_2x64_close( &ctx.sha512, vhash );
dintrlv_2x64( hash0, hash1, vhash, 512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
return 1;
}
int x16r_2x64_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*2] __attribute__ ((aligned (64)));
if ( !x16r_2x64_hash_generic( hash, input, thrid, x16r_hash_order,
X16R_HASH_FUNC_COUNT ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
return 1;
}
int scanhash_x16r_2x64( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[16*2] __attribute__ ((aligned (64)));
uint32_t vdata[20*2] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
v128_t *noncev = (v128_t*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
if ( bench ) ptarget[7] = 0x0cff;
static __thread uint32_t saved_height = UINT32_MAX;
if ( work->height != saved_height )
{
vdata[1] = bswap_32( pdata[1] );
vdata[2] = bswap_32( pdata[2] );
saved_height = work->height;
x16_r_s_getAlgoString( (const uint8_t*)(&vdata[1]), x16r_hash_order );
if ( !opt_quiet && !thr_id )
applog( LOG_INFO, "hash order %s", x16r_hash_order );
}
x16r_2x64_prehash( vdata, pdata, x16r_hash_order );
*noncev = v128_intrlv_blend_32( v128_set32( n+1, 0, n, 0 ), *noncev );
do
{
if ( x16r_2x64_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 2; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = v128_add32( *noncev, v128_64( 0x0000000200000000 ) );
n += 2;
} while ( likely( ( n < last_nonce ) && !(*restart) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif