Files
cpuminer-opt-gpu/algo/groestl/aes_ni/groestl-intr-aes.h
Jay D Dee 1b76cee239 v3.11.9
2020-02-04 01:31:59 -05:00

638 lines
20 KiB
C

#if !defined GROESTL_INTR_AES_H__
#define GROESTL_INTR_AES_H__
/* groestl-intr-aes.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3, sse4.1, and aes
* instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#include <smmintrin.h>
#include <wmmintrin.h>
#include "hash-groestl.h"
static const __m128i round_const_p[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xf0e0d0c0b0a09080 },
{ 0x7161514131211101, 0xf1e1d1c1b1a19181 },
{ 0x7262524232221202, 0xf2e2d2c2b2a29282 },
{ 0x7363534333231303, 0xf3e3d3c3b3a39383 },
{ 0x7464544434241404, 0xf4e4d4c4b4a49484 },
{ 0x7565554535251505, 0xf5e5d5c5b5a59585 },
{ 0x7666564636261606, 0xf6e6d6c6b6a69686 },
{ 0x7767574737271707, 0xf7e7d7c7b7a79787 },
{ 0x7868584838281808, 0xf8e8d8c8b8a89888 },
{ 0x7969594939291909, 0xf9e9d9c9b9a99989 },
{ 0x7a6a5a4a3a2a1a0a, 0xfaeadacabaaa9a8a },
{ 0x7b6b5b4b3b2b1b0b, 0xfbebdbcbbbab9b8b },
{ 0x7c6c5c4c3c2c1c0c, 0xfcecdcccbcac9c8c },
{ 0x7d6d5d4d3d2d1d0d, 0xfdedddcdbdad9d8d }
};
static const __m128i round_const_q[] __attribute__ ((aligned (64))) =
{
{ 0x8f9fafbfcfdfefff, 0x0f1f2f3f4f5f6f7f },
{ 0x8e9eaebecedeeefe, 0x0e1e2e3e4e5e6e7e },
{ 0x8d9dadbdcdddedfd, 0x0d1d2d3d4d5d6d7d },
{ 0x8c9cacbcccdcecfc, 0x0c1c2c3c4c5c6c7c },
{ 0x8b9babbbcbdbebfb, 0x0b1b2b3b4b5b6b7b },
{ 0x8a9aaabacadaeafa, 0x0a1a2a3a4a5a6a7a },
{ 0x8999a9b9c9d9e9f9, 0x0919293949596979 },
{ 0x8898a8b8c8d8e8f8, 0x0818283848586878 },
{ 0x8797a7b7c7d7e7f7, 0x0717273747576777 },
{ 0x8696a6b6c6d6e6f6, 0x0616263646566676 },
{ 0x8595a5b5c5d5e5f5, 0x0515253545556575 },
{ 0x8494a4b4c4d4e4f4, 0x0414243444546474 },
{ 0x8393a3b3c3d3e3f3, 0x0313233343536373 },
{ 0x8292a2b2c2d2e2f2, 0x0212223242526272 }
};
static const __m128i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02 };
static const __m128i SUBSH_MASK0 = { 0x0b0e0104070a0d00, 0x0306090c0f020508 };
static const __m128i SUBSH_MASK1 = { 0x0c0f0205080b0e01, 0x04070a0d00030609 };
static const __m128i SUBSH_MASK2 = { 0x0d000306090c0f02, 0x05080b0e0104070a };
static const __m128i SUBSH_MASK3 = { 0x0e0104070a0d0003, 0x06090c0f0205080b };
static const __m128i SUBSH_MASK4 = { 0x0f0205080b0e0104, 0x070a0d000306090c };
static const __m128i SUBSH_MASK5 = { 0x000306090c0f0205, 0x080b0e0104070a0d };
static const __m128i SUBSH_MASK6 = { 0x0104070a0d000306, 0x090c0f0205080b0e };
static const __m128i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003 };
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2(i, j, k){\
j = _mm_xor_si128(j, j);\
j = _mm_cmpgt_epi8(j, i);\
i = _mm_add_epi8(i, i);\
j = _mm_and_si128(j, k);\
i = _mm_xor_si128(i, j);\
}
/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm_xor_si128(a0, a1);\
b0 = a2;\
a1 = _mm_xor_si128(a1, a2);\
b1 = a3;\
a2 = _mm_xor_si128(a2, a3);\
b2 = a4;\
a3 = _mm_xor_si128(a3, a4);\
b3 = a5;\
a4 = _mm_xor_si128(a4, a5);\
b4 = a6;\
a5 = _mm_xor_si128(a5, a6);\
b5 = a7;\
a6 = _mm_xor_si128(a6, a7);\
a7 = _mm_xor_si128(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm_xor_si128(b0, a4);\
b6 = _mm_xor_si128(b6, a4);\
b1 = _mm_xor_si128(b1, a5);\
b7 = _mm_xor_si128(b7, a5);\
b2 = _mm_xor_si128(b2, a6);\
b0 = _mm_xor_si128(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm_xor_si128(b3, a7);\
b1 = _mm_xor_si128(b1, a7);\
TEMP1 = b1;\
b4 = _mm_xor_si128(b4, a0);\
b2 = _mm_xor_si128(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm_xor_si128(b5, a1);\
b3 = _mm_xor_si128(b3, a1);\
b1 = a1;\
b6 = _mm_xor_si128(b6, a2);\
b4 = _mm_xor_si128(b4, a2);\
TEMP2 = a2;\
b7 = _mm_xor_si128(b7, a3);\
b5 = _mm_xor_si128(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm_xor_si128(a0, a3);\
a1 = _mm_xor_si128(a1, a4);\
a2 = _mm_xor_si128(a2, a5);\
a3 = _mm_xor_si128(a3, a6);\
a4 = _mm_xor_si128(a4, a7);\
a5 = _mm_xor_si128(a5, b0);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = m128_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm_xor_si128(a0, TEMP0);\
MUL2(a1, b0, b1);\
a1 = _mm_xor_si128(a1, TEMP1);\
MUL2(a2, b0, b1);\
a2 = _mm_xor_si128(a2, b2);\
MUL2(a3, b0, b1);\
a3 = _mm_xor_si128(a3, b3);\
MUL2(a4, b0, b1);\
a4 = _mm_xor_si128(a4, b4);\
MUL2(a5, b0, b1);\
a5 = _mm_xor_si128(a5, b5);\
MUL2(a6, b0, b1);\
a6 = _mm_xor_si128(a6, b6);\
MUL2(a7, b0, b1);\
a7 = _mm_xor_si128(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2(a0, b0, b1);\
b5 = _mm_xor_si128(b5, a0);\
MUL2(a1, b0, b1);\
b6 = _mm_xor_si128(b6, a1);\
MUL2(a2, b0, b1);\
b7 = _mm_xor_si128(b7, a2);\
MUL2(a5, b0, b1);\
b2 = _mm_xor_si128(b2, a5);\
MUL2(a6, b0, b1);\
b3 = _mm_xor_si128(b3, a6);\
MUL2(a7, b0, b1);\
b4 = _mm_xor_si128(b4, a7);\
MUL2(a3, b0, b1);\
MUL2(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm_xor_si128(b0, a3);\
b1 = _mm_xor_si128(b1, a4);\
}/*MixBytes*/
/* one round
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define SUBMIX(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* SubBytes */\
b0 = _mm_xor_si128(b0, b0);\
a0 = _mm_aesenclast_si128(a0, b0);\
a1 = _mm_aesenclast_si128(a1, b0);\
a2 = _mm_aesenclast_si128(a2, b0);\
a3 = _mm_aesenclast_si128(a3, b0);\
a4 = _mm_aesenclast_si128(a4, b0);\
a5 = _mm_aesenclast_si128(a5, b0);\
a6 = _mm_aesenclast_si128(a6, b0);\
a7 = _mm_aesenclast_si128(a7, b0);\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
#define ROUNDS_P(){\
u8 round_counter = 0;\
for(round_counter = 0; round_counter < 14; round_counter+=2) {\
/* AddRoundConstant P1024 */\
xmm8 = _mm_xor_si128( xmm8, \
casti_m128i( round_const_p, round_counter ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8( xmm8, SUBSH_MASK0 ); \
xmm9 = _mm_shuffle_epi8( xmm9, SUBSH_MASK1 ); \
xmm10 = _mm_shuffle_epi8( xmm10, SUBSH_MASK2 ); \
xmm11 = _mm_shuffle_epi8( xmm11, SUBSH_MASK3 ); \
xmm12 = _mm_shuffle_epi8( xmm12, SUBSH_MASK4 ); \
xmm13 = _mm_shuffle_epi8( xmm13, SUBSH_MASK5 ); \
xmm14 = _mm_shuffle_epi8( xmm14, SUBSH_MASK6 ); \
xmm15 = _mm_shuffle_epi8( xmm15, SUBSH_MASK7 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 ); \
\
/* AddRoundConstant P1024 */\
xmm0 = _mm_xor_si128( xmm0, \
casti_m128i( round_const_p, round_counter+1 ) ); \
xmm0 = _mm_shuffle_epi8( xmm0, SUBSH_MASK0 ); \
xmm1 = _mm_shuffle_epi8( xmm1, SUBSH_MASK1 ); \
xmm2 = _mm_shuffle_epi8( xmm2, SUBSH_MASK2 ); \
xmm3 = _mm_shuffle_epi8( xmm3, SUBSH_MASK3 ); \
xmm4 = _mm_shuffle_epi8( xmm4, SUBSH_MASK4 ); \
xmm5 = _mm_shuffle_epi8( xmm5, SUBSH_MASK5 ); \
xmm6 = _mm_shuffle_epi8( xmm6, SUBSH_MASK6 ); \
xmm7 = _mm_shuffle_epi8( xmm7, SUBSH_MASK7 ); \
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
}\
}
#define ROUNDS_Q(){\
u8 round_counter = 0;\
for(round_counter = 0; round_counter < 14; round_counter+=2) {\
/* AddRoundConstant Q1024 */\
xmm1 = m128_neg1;\
xmm8 = _mm_xor_si128( xmm8, xmm1 ); \
xmm9 = _mm_xor_si128( xmm9, xmm1 ); \
xmm10 = _mm_xor_si128( xmm10, xmm1 ); \
xmm11 = _mm_xor_si128( xmm11, xmm1 ); \
xmm12 = _mm_xor_si128( xmm12, xmm1 ); \
xmm13 = _mm_xor_si128( xmm13, xmm1 ); \
xmm14 = _mm_xor_si128( xmm14, xmm1 ); \
xmm15 = _mm_xor_si128( xmm15, \
casti_m128i( round_const_q, round_counter ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8( xmm8, SUBSH_MASK1 ); \
xmm9 = _mm_shuffle_epi8( xmm9, SUBSH_MASK3 ); \
xmm10 = _mm_shuffle_epi8( xmm10, SUBSH_MASK5 ); \
xmm11 = _mm_shuffle_epi8( xmm11, SUBSH_MASK7 ); \
xmm12 = _mm_shuffle_epi8( xmm12, SUBSH_MASK0 ); \
xmm13 = _mm_shuffle_epi8( xmm13, SUBSH_MASK2 ); \
xmm14 = _mm_shuffle_epi8( xmm14, SUBSH_MASK4 ); \
xmm15 = _mm_shuffle_epi8( xmm15, SUBSH_MASK6 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6 , xmm7 ); \
\
/* AddRoundConstant Q1024 */\
xmm9 = m128_neg1;\
xmm0 = _mm_xor_si128( xmm0, xmm9 ); \
xmm1 = _mm_xor_si128( xmm1, xmm9 ); \
xmm2 = _mm_xor_si128( xmm2, xmm9 ); \
xmm3 = _mm_xor_si128( xmm3, xmm9 ); \
xmm4 = _mm_xor_si128( xmm4, xmm9 ); \
xmm5 = _mm_xor_si128( xmm5, xmm9 ); \
xmm6 = _mm_xor_si128( xmm6, xmm9 ); \
xmm7 = _mm_xor_si128( xmm7, \
casti_m128i( round_const_q, round_counter+1 ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm_shuffle_epi8( xmm0, SUBSH_MASK1 ); \
xmm1 = _mm_shuffle_epi8( xmm1, SUBSH_MASK3 ); \
xmm2 = _mm_shuffle_epi8( xmm2, SUBSH_MASK5 ); \
xmm3 = _mm_shuffle_epi8( xmm3, SUBSH_MASK7 ); \
xmm4 = _mm_shuffle_epi8( xmm4, SUBSH_MASK0 ); \
xmm5 = _mm_shuffle_epi8( xmm5, SUBSH_MASK2 ); \
xmm6 = _mm_shuffle_epi8( xmm6, SUBSH_MASK4 ); \
xmm7 = _mm_shuffle_epi8( xmm7, SUBSH_MASK6 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
}\
}
/* Matrix Transpose
* input is a 1024-bit state with two columns in one xmm
* output is a 1024-bit state with two rows in one xmm
* inputs: i0-i7
* outputs: i0-i7
* clobbers: t0-t7
*/
#define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\
t0 = TRANSP_MASK; \
\
i6 = _mm_shuffle_epi8(i6, t0);\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\
i2 = _mm_shuffle_epi8(i2, t0);\
i3 = _mm_shuffle_epi8(i3, t0);\
t1 = i2;\
i4 = _mm_shuffle_epi8(i4, t0);\
i5 = _mm_shuffle_epi8(i5, t0);\
t2 = i4;\
t3 = i6;\
i7 = _mm_shuffle_epi8(i7, t0);\
\
/* continue with unpack using 4 temp registers */\
t0 = i0;\
t2 = _mm_unpackhi_epi16(t2, i5);\
i4 = _mm_unpacklo_epi16(i4, i5);\
t3 = _mm_unpackhi_epi16(t3, i7);\
i6 = _mm_unpacklo_epi16(i6, i7);\
t0 = _mm_unpackhi_epi16(t0, i1);\
t1 = _mm_unpackhi_epi16(t1, i3);\
i2 = _mm_unpacklo_epi16(i2, i3);\
i0 = _mm_unpacklo_epi16(i0, i1);\
\
/* shuffle with immediate */\
t0 = _mm_shuffle_epi32(t0, 216);\
t1 = _mm_shuffle_epi32(t1, 216);\
t2 = _mm_shuffle_epi32(t2, 216);\
t3 = _mm_shuffle_epi32(t3, 216);\
i0 = _mm_shuffle_epi32(i0, 216);\
i2 = _mm_shuffle_epi32(i2, 216);\
i4 = _mm_shuffle_epi32(i4, 216);\
i6 = _mm_shuffle_epi32(i6, 216);\
\
/* continue with unpack */\
t4 = i0;\
i0 = _mm_unpacklo_epi32(i0, i2);\
t4 = _mm_unpackhi_epi32(t4, i2);\
t5 = t0;\
t0 = _mm_unpacklo_epi32(t0, t1);\
t5 = _mm_unpackhi_epi32(t5, t1);\
t6 = i4;\
i4 = _mm_unpacklo_epi32(i4, i6);\
t7 = t2;\
t6 = _mm_unpackhi_epi32(t6, i6);\
i2 = t0;\
t2 = _mm_unpacklo_epi32(t2, t3);\
i3 = t0;\
t7 = _mm_unpackhi_epi32(t7, t3);\
\
/* there are now 2 rows in each xmm */\
/* unpack to get 1 row of CV in each xmm */\
i1 = i0;\
i1 = _mm_unpackhi_epi64(i1, i4);\
i0 = _mm_unpacklo_epi64(i0, i4);\
i4 = t4;\
i3 = _mm_unpackhi_epi64(i3, t2);\
i5 = t4;\
i2 = _mm_unpacklo_epi64(i2, t2);\
i6 = t5;\
i5 = _mm_unpackhi_epi64(i5, t6);\
i7 = t5;\
i4 = _mm_unpacklo_epi64(i4, t6);\
i7 = _mm_unpackhi_epi64(i7, t7);\
i6 = _mm_unpacklo_epi64(i6, t7);\
/* transpose done */\
}/**/
/* Matrix Transpose Inverse
* input is a 1024-bit state with two rows in one xmm
* output is a 1024-bit state with two columns in one xmm
* inputs: i0-i7
* outputs: (i0, o0, i1, i3, o1, o2, i5, i7)
* clobbers: t0-t4
*/
#define Matrix_Transpose_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, t0, t1, t2, t3, t4){\
/* transpose matrix to get output format */\
o1 = i0;\
i0 = _mm_unpacklo_epi64(i0, i1);\
o1 = _mm_unpackhi_epi64(o1, i1);\
t0 = i2;\
i2 = _mm_unpacklo_epi64(i2, i3);\
t0 = _mm_unpackhi_epi64(t0, i3);\
t1 = i4;\
i4 = _mm_unpacklo_epi64(i4, i5);\
t1 = _mm_unpackhi_epi64(t1, i5);\
t2 = i6;\
o0 = TRANSP_MASK; \
i6 = _mm_unpacklo_epi64(i6, i7);\
t2 = _mm_unpackhi_epi64(t2, i7);\
/* load transpose mask into a register, because it will be used 8 times */\
i0 = _mm_shuffle_epi8(i0, o0);\
i2 = _mm_shuffle_epi8(i2, o0);\
i4 = _mm_shuffle_epi8(i4, o0);\
i6 = _mm_shuffle_epi8(i6, o0);\
o1 = _mm_shuffle_epi8(o1, o0);\
t0 = _mm_shuffle_epi8(t0, o0);\
t1 = _mm_shuffle_epi8(t1, o0);\
t2 = _mm_shuffle_epi8(t2, o0);\
/* continue with unpack using 4 temp registers */\
t3 = i4;\
o2 = o1;\
o0 = i0;\
t4 = t1;\
\
t3 = _mm_unpackhi_epi16(t3, i6);\
i4 = _mm_unpacklo_epi16(i4, i6);\
o0 = _mm_unpackhi_epi16(o0, i2);\
i0 = _mm_unpacklo_epi16(i0, i2);\
o2 = _mm_unpackhi_epi16(o2, t0);\
o1 = _mm_unpacklo_epi16(o1, t0);\
t4 = _mm_unpackhi_epi16(t4, t2);\
t1 = _mm_unpacklo_epi16(t1, t2);\
/* shuffle with immediate */\
i4 = _mm_shuffle_epi32(i4, 216);\
t3 = _mm_shuffle_epi32(t3, 216);\
o1 = _mm_shuffle_epi32(o1, 216);\
o2 = _mm_shuffle_epi32(o2, 216);\
i0 = _mm_shuffle_epi32(i0, 216);\
o0 = _mm_shuffle_epi32(o0, 216);\
t1 = _mm_shuffle_epi32(t1, 216);\
t4 = _mm_shuffle_epi32(t4, 216);\
/* continue with unpack */\
i1 = i0;\
i3 = o0;\
i5 = o1;\
i7 = o2;\
i0 = _mm_unpacklo_epi32(i0, i4);\
i1 = _mm_unpackhi_epi32(i1, i4);\
o0 = _mm_unpacklo_epi32(o0, t3);\
i3 = _mm_unpackhi_epi32(i3, t3);\
o1 = _mm_unpacklo_epi32(o1, t1);\
i5 = _mm_unpackhi_epi32(i5, t1);\
o2 = _mm_unpacklo_epi32(o2, t4);\
i7 = _mm_unpackhi_epi32(i7, t4);\
/* transpose done */\
}/**/
void INIT( __m128i* chaining )
{
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* transform chaining value from column ordering into row ordering */
Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store transposed IV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
}
void TF1024( __m128i* chaining, const __m128i* message )
{
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i QTEMP[8];
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
#ifdef IACA_TRACE
IACA_START;
#endif
/* load message into registers xmm8 - xmm15 (Q = message) */
xmm8 = message[0];
xmm9 = message[1];
xmm10 = message[2];
xmm11 = message[3];
xmm12 = message[4];
xmm13 = message[5];
xmm14 = message[6];
xmm15 = message[7];
/* transform message M from column ordering into row ordering */
Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store message M (Q input) for later */
QTEMP[0] = xmm8;
QTEMP[1] = xmm9;
QTEMP[2] = xmm10;
QTEMP[3] = xmm11;
QTEMP[4] = xmm12;
QTEMP[5] = xmm13;
QTEMP[6] = xmm14;
QTEMP[7] = xmm15;
/* xor CV to message to get P input */
/* result: CV+M in xmm8...xmm15 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm9 = _mm_xor_si128(xmm9, (chaining[1]));
xmm10 = _mm_xor_si128(xmm10, (chaining[2]));
xmm11 = _mm_xor_si128(xmm11, (chaining[3]));
xmm12 = _mm_xor_si128(xmm12, (chaining[4]));
xmm13 = _mm_xor_si128(xmm13, (chaining[5]));
xmm14 = _mm_xor_si128(xmm14, (chaining[6]));
xmm15 = _mm_xor_si128(xmm15, (chaining[7]));
/* compute permutation P */
/* result: P(CV+M) in xmm8...xmm15 */
ROUNDS_P();
/* xor CV to P output (feed-forward) */
/* result: P(CV+M)+CV in xmm8...xmm15 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm9 = _mm_xor_si128(xmm9, (chaining[1]));
xmm10 = _mm_xor_si128(xmm10, (chaining[2]));
xmm11 = _mm_xor_si128(xmm11, (chaining[3]));
xmm12 = _mm_xor_si128(xmm12, (chaining[4]));
xmm13 = _mm_xor_si128(xmm13, (chaining[5]));
xmm14 = _mm_xor_si128(xmm14, (chaining[6]));
xmm15 = _mm_xor_si128(xmm15, (chaining[7]));
/* store P(CV+M)+CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
/* load message M (Q input) into xmm8-15 */
xmm8 = QTEMP[0];
xmm9 = QTEMP[1];
xmm10 = QTEMP[2];
xmm11 = QTEMP[3];
xmm12 = QTEMP[4];
xmm13 = QTEMP[5];
xmm14 = QTEMP[6];
xmm15 = QTEMP[7];
/* compute permutation Q */
/* result: Q(M) in xmm8...xmm15 */
ROUNDS_Q();
/* xor Q output */
/* result: P(CV+M)+CV+Q(M) in xmm8...xmm15 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm9 = _mm_xor_si128(xmm9, (chaining[1]));
xmm10 = _mm_xor_si128(xmm10, (chaining[2]));
xmm11 = _mm_xor_si128(xmm11, (chaining[3]));
xmm12 = _mm_xor_si128(xmm12, (chaining[4]));
xmm13 = _mm_xor_si128(xmm13, (chaining[5]));
xmm14 = _mm_xor_si128(xmm14, (chaining[6]));
xmm15 = _mm_xor_si128(xmm15, (chaining[7]));
/* store CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF1024( __m128i* chaining )
{
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
/* load CV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* compute permutation P */
/* result: P(CV) in xmm8...xmm15 */
ROUNDS_P();
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8...xmm15 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm9 = _mm_xor_si128(xmm9, (chaining[1]));
xmm10 = _mm_xor_si128(xmm10, (chaining[2]));
xmm11 = _mm_xor_si128(xmm11, (chaining[3]));
xmm12 = _mm_xor_si128(xmm12, (chaining[4]));
xmm13 = _mm_xor_si128(xmm13, (chaining[5]));
xmm14 = _mm_xor_si128(xmm14, (chaining[6]));
xmm15 = _mm_xor_si128(xmm15, (chaining[7]));
/* transpose CV back from row ordering to column ordering */
/* result: final hash value in xmm0, xmm6, xmm13, xmm15 */
Matrix_Transpose_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm4, xmm0, xmm6, xmm1, xmm2, xmm3, xmm5, xmm7);
/* we only need to return the truncated half of the state */
chaining[4] = xmm0;
chaining[5] = xmm6;
chaining[6] = xmm13;
chaining[7] = xmm15;
return;
}
#endif