Files
cpuminer-opt-gpu/simd-utils/simd-256.h
Jay D Dee f552f2b1e8 v3.19.9
2022-07-10 11:04:00 -04:00

519 lines
17 KiB
C

#if !defined(SIMD_256_H__)
#define SIMD_256_H__ 1
//#if defined(__AVX2__)
/////////////////////////////////////////////////////////////////////
//
// AVX2 256 bit vectors
//
// Basic support for 256 bit vectors is available with AVX but integer
// support requires AVX2.
// Some 256 bit vector utilities require AVX512 or have more efficient
// AVX512 implementations. They will be selected automatically but their use
// is limited because 256 bit vectors are less likely to be used when 512
// is available.
#if defined(__AVX__)
// Used instead of casting.
typedef union
{
__m256i m256;
__m128i m128[2];
uint64_t u64[4];
uint32_t u32[8];
} __attribute__ ((aligned (32))) m256_ovly;
//
// Pointer casting
// p = any aligned pointer
// returns p as pointer to vector type, not very useful
#define castp_m256i(p) ((__m256i*)(p))
// p = any aligned pointer
// returns *p, watch your pointer arithmetic
#define cast_m256i(p) (*((__m256i*)(p)))
// p = any aligned pointer, i = scaled array index
// returns value p[i]
#define casti_m256i(p,i) (((__m256i*)(p))[(i)])
// p = any aligned pointer, o = scaled offset
// returns pointer p+o
#define casto_m256i(p,o) (((__m256i*)(p))+(o))
#endif
#if defined(__AVX2__)
// Move integer to low element of vector, other elements are set to zero.
#define mm256_mov64_256( i ) _mm256_castsi128_si256( mm128_mov64_128( i ) )
#define mm256_mov32_256( i ) _mm256_castsi128_si256( mm128_mov32_128( i ) )
// Move low element of vector to integer.
#define u64_mov256_64( v ) u64_mov128_64( _mm256_castsi256_si128( v ) )
#define u32_mov256_32( v ) u32_mov128_32( _mm256_castsi256_si128( v ) )
// deprecated
//#define mm256_mov256_64 u64_mov256_64
//#define mm256_mov256_32 u32_mov256_32
// concatenate two 128 bit vectors into one 256 bit vector: { hi, lo }
#define mm256_concat_128( hi, lo ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( lo ), hi, 1 )
// Equivalent of set, move 64 bit integer constants to respective 64 bit
// elements.
static inline __m256i m256_const_64( const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
union { __m256i m256i;
uint64_t u64[4]; } v;
v.u64[0] = i0; v.u64[1] = i1; v.u64[2] = i2; v.u64[3] = i3;
return v.m256i;
}
// Equivalent of set1.
// 128 bit vector argument
#define m256_const1_128( v ) \
_mm256_permute4x64_epi64( _mm256_castsi128_si256( v ), 0x44 )
// 64 bit integer argument zero extended to 128 bits.
#define m256_const1_i128( i ) m256_const1_128( mm128_mov64_128( i ) )
#define m256_const1_64( i ) _mm256_broadcastq_epi64( mm128_mov64_128( i ) )
#define m256_const1_32( i ) _mm256_broadcastd_epi32( mm128_mov32_128( i ) )
#define m256_const1_16( i ) _mm256_broadcastw_epi16( mm128_mov32_128( i ) )
#define m256_const1_8 ( i ) _mm256_broadcastb_epi8 ( mm128_mov32_128( i ) )
#define m256_const2_64( i1, i0 ) \
m256_const1_128( m128_const_64( i1, i0 ) )
//
// All SIMD constant macros are actually functions containing executable
// code and therefore can't be used as compile time initializers.
#define m256_zero _mm256_setzero_si256()
#define m256_one_256 mm256_mov64_256( 1 )
#define m256_one_128 m256_const1_i128( 1 )
#define m256_one_64 _mm256_broadcastq_epi64( mm128_mov64_128( 1 ) )
#define m256_one_32 _mm256_broadcastd_epi32( mm128_mov64_128( 1 ) )
#define m256_one_16 _mm256_broadcastw_epi16( mm128_mov64_128( 1 ) )
#define m256_one_8 _mm256_broadcastb_epi8 ( mm128_mov64_128( 1 ) )
static inline __m256i mm256_neg1_fn()
{
__m256i v;
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(v) );
return v;
}
#define m256_neg1 mm256_neg1_fn()
// Consistent naming for similar operations.
#define mm128_extr_lo128_256( v ) _mm256_castsi256_si128( v )
#define mm128_extr_hi128_256( v ) _mm256_extracti128_si256( v, 1 )
//
// Memory functions
// n = number of 256 bit (32 byte) vectors
static inline void memset_zero_256( __m256i *dst, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = m256_zero; }
static inline void memset_256( __m256i *dst, const __m256i a, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
//
// Basic operations without SIMD equivalent
// Bitwise not ( ~v )
#define mm256_not( v ) _mm256_xor_si256( v, m256_neg1 ) \
// Unary negation of each element ( -v )
#define mm256_negate_64( v ) _mm256_sub_epi64( m256_zero, v )
#define mm256_negate_32( v ) _mm256_sub_epi32( m256_zero, v )
#define mm256_negate_16( v ) _mm256_sub_epi16( m256_zero, v )
// Add 4 values, fewer dependencies than sequential addition.
#define mm256_add4_64( a, b, c, d ) \
_mm256_add_epi64( _mm256_add_epi64( a, b ), _mm256_add_epi64( c, d ) )
#define mm256_add4_32( a, b, c, d ) \
_mm256_add_epi32( _mm256_add_epi32( a, b ), _mm256_add_epi32( c, d ) )
#define mm256_add4_16( a, b, c, d ) \
_mm256_add_epi16( _mm256_add_epi16( a, b ), _mm256_add_epi16( c, d ) )
#define mm256_add4_8( a, b, c, d ) \
_mm256_add_epi8( _mm256_add_epi8( a, b ), _mm256_add_epi8( c, d ) )
#if defined(__AVX512VL__)
// AVX512 has ternary logic that supports any 3 input boolean expression.
// a ^ b ^ c
#define mm256_xor3( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x96 )
// legacy convenience only
#define mm256_xor4( a, b, c, d ) \
_mm256_xor_si256( a, mm256_xor3( b, c, d ) )
// a & b & c
#define mm256_and3( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x80 )
// a | b | c
#define mm256_or3( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0xfe )
// a ^ ( b & c )
#define mm256_xorand( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x78 )
// a & ( b ^ c )
#define mm256_andxor( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x60 )
// a ^ ( b | c )
#define mm256_xoror( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x1e )
// a ^ ( ~b & c )
#define mm256_xorandnot( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0xd2 )
// a | ( b & c )
#define mm256_orand( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0xf8 )
// ~( a ^ b ), same as (~a) ^ b
#define mm256_xnor( a, b ) \
_mm256_ternarylogic_epi64( a, b, b, 0x81 )
#else
#define mm256_xor3( a, b, c ) \
_mm256_xor_si256( a, _mm256_xor_si256( b, c ) )
#define mm256_xor4( a, b, c, d ) \
_mm256_xor_si256( _mm256_xor_si256( a, b ), _mm256_xor_si256( c, d ) )
#define mm256_and3( a, b, c ) \
_mm256_and_si256( a, _mm256_and_si256( b, c ) )
#define mm256_or3( a, b, c ) \
_mm256_or_si256( a, _mm256_or_si256( b, c ) )
#define mm256_xorand( a, b, c ) \
_mm256_xor_si256( a, _mm256_and_si256( b, c ) )
#define mm256_andxor( a, b, c ) \
_mm256_and_si256( a, _mm256_xor_si256( b, c ))
#define mm256_xoror( a, b, c ) \
_mm256_xor_si256( a, _mm256_or_si256( b, c ) )
#define mm256_xorandnot( a, b, c ) \
_mm256_xor_si256( a, _mm256_andnot_si256( b, c ) )
#define mm256_orand( a, b, c ) \
_mm256_or_si256( a, _mm256_and_si256( b, c ) )
#define mm256_xnor( a, b ) \
mm256_not( _mm256_xor_si256( a, b ) )
#endif
// Mask making
// Equivalent of AVX512 _mm256_movepi64_mask & _mm256_movepi32_mask.
// Returns 4 or 8 bit integer mask from MSB of 64 or 32 bit elements.
#define mm256_movmask_64( v ) \
_mm256_castpd_si256( _mm256_movmask_pd( _mm256_castsi256_pd( v ) ) )
#define mm256_movmask_32( v ) \
_mm256_castps_si256( _mm256_movmask_ps( _mm256_castsi256_ps( v ) ) )
// Diagonal blending
// Blend 4 64 bit elements from 4 vectors
#define mm256_diagonal_64( v3, v2, v1, v0 ) \
mm256_blend_epi32( _mm256_blend_epi32( v3, v2, 0x30 ), \
_mm256_blend_epi32( v1, v0, 0x03 ), 0x0f )
// Blend 8 32 bit elements from 8 vectors
#define mm256_diagonal_32( v7, v6, v5, v4, v3, v2, v1, v0 ) \
_mm256_blend_epi32( \
_mm256_blend_epi32( \
_mm256_blend_epi32( v7, v6, 0x40 ), \
_mm256_blend_epi32( v5, v4, 0x10 ) 0x30 ), \
_mm256_blend_epi32( \
_mm256_blend_epi32( v3, v2, 0x04) \
_mm256_blend_epi32( v1, v0, 0x01 ), 0x03 ), 0x0f )
// Blend 4 32 bit elements from each 128 bit lane.
#define mm256_diagonal128_32( v3, v2, v1, v0 ) \
_mm256_blend_epi32( \
_mm256_blend_epi32( v3, v2, 0x44) \
_mm256_blend_epi32( v1, v0, 0x11 ) )
//
// Bit rotations.
//
// The only bit shift for more than 64 bits is with __int128 which is slow.
//
// AVX512 has bit rotate for 256 bit vectors with 64 or 32 bit elements
//
// x2 rotates elements in 2 individual vectors in a double buffered
// optimization for SSE2, does nothing for AVX512 but is there for
// transparency.
// compiler doesn't like when a variable is used for the last arg of
// _mm_rol_epi32, must be "8 bit immediate". Therefore use rol_var where
// necessary.
#define mm256_ror_var_64( v, c ) \
_mm256_or_si256( _mm256_srli_epi64( v, c ), \
_mm256_slli_epi64( v, 64-(c) ) )
#define mm256_rol_var_64( v, c ) \
_mm256_or_si256( _mm256_slli_epi64( v, c ), \
_mm256_srli_epi64( v, 64-(c) ) )
#define mm256_ror_var_32( v, c ) \
_mm256_or_si256( _mm256_srli_epi32( v, c ), \
_mm256_slli_epi32( v, 32-(c) ) )
#define mm256_rol_var_32( v, c ) \
_mm256_or_si256( _mm256_slli_epi32( v, c ), \
_mm256_srli_epi32( v, 32-(c) ) )
// The spec says both F & VL are required, but just in case AMD
// decides to implement ROL/R without AVX512F.
#if defined(__AVX512VL__)
//#if defined(__AVX512F__) && defined(__AVX512VL__)
// AVX512, control must be 8 bit immediate.
#define mm256_ror_64 _mm256_ror_epi64
#define mm256_rol_64 _mm256_rol_epi64
#define mm256_ror_32 _mm256_ror_epi32
#define mm256_rol_32 _mm256_rol_epi32
#define mm256_rorx2_64( v1, v0, c ) \
_mm256_ror_epi64( v0, c ); \
_mm256_ror_epi64( v1, c )
#define mm256_rolx2_64( v1, v0, c ) \
_mm256_rol_epi64( v0, c ); \
_mm256_rol_epi64( v1, c )
#define mm256_rorx2_32( v1, v0, c ) \
_mm256_ror_epi32( v0, c ); \
_mm256_ror_epi32( v1, c )
#define mm256_rolx2_32( v1, v0, c ) \
_mm256_rol_epi32( v0, c ); \
_mm256_rol_epi32( v1, c )
#else // AVX2
#define mm256_ror_64 mm256_ror_var_64
#define mm256_rol_64 mm256_rol_var_64
#define mm256_ror_32 mm256_ror_var_32
#define mm256_rol_32 mm256_rol_var_32
#define mm256_rorx2_64( v1, v0, c ) \
{ \
__m256i t0 = _mm256_srli_epi64( v0, c ); \
__m256i t1 = _mm256_srli_epi64( v1, c ); \
v0 = _mm256_slli_epi64( v0, 64-(c) ); \
v1 = _mm256_slli_epi64( v1, 64-(c) ); \
v0 = _mm256_or_si256( v0, t0 ); \
v1 = _mm256_or_si256( v1, t1 ); \
}
#define mm256_rolx2_64( v1, v0, c ) \
{ \
__m256i t0 = _mm256_slli_epi64( v0, c ); \
__m256i t1 = _mm256_slli_epi64( v1, c ); \
v0 = _mm256_srli_epi64( v0, 64-(c) ); \
v1 = _mm256_srli_epi64( v1, 64-(c) ); \
v0 = _mm256_or_si256( v0, t0 ); \
v1 = _mm256_or_si256( v1, t1 ); \
}
#define mm256_rorx2_32( v1, v0, c ) \
{ \
__m256i t0 = _mm256_srli_epi32( v0, c ); \
__m256i t1 = _mm256_srli_epi32( v1, c ); \
v0 = _mm256_slli_epi32( v0, 32-(c) ); \
v1 = _mm256_slli_epi32( v1, 32-(c) ); \
v0 = _mm256_or_si256( v0, t0 ); \
v1 = _mm256_or_si256( v1, t1 ); \
}
#define mm256_rolx2_32( v1, v0, c ) \
{ \
__m256i t0 = _mm256_slli_epi32( v0, c ); \
__m256i t1 = _mm256_slli_epi32( v1, c ); \
v0 = _mm256_srli_epi32( v0, 32-(c) ); \
v1 = _mm256_srli_epi32( v1, 32-(c) ); \
v0 = _mm256_or_si256( v0, t0 ); \
v1 = _mm256_or_si256( v1, t1 ); \
}
#endif // AVX512 else AVX2
#define mm256_ror_16( v, c ) \
_mm256_or_si256( _mm256_srli_epi16( v, c ), \
_mm256_slli_epi16( v, 16-(c) ) )
#define mm256_rol_16( v, c ) \
_mm256_or_si256( _mm256_slli_epi16( v, c ), \
_mm256_srli_epi16( v, 16-(c) ) )
//
// Rotate elements accross all lanes.
// Swap 128 bit elements in 256 bit vector.
#define mm256_swap_128( v ) _mm256_permute4x64_epi64( v, 0x4e )
#define mm256_shuflr_128 mm256_swap_128
#define mm256_shufll_128 mm256_swap_128
// Rotate 256 bit vector by one 64 bit element
#define mm256_shuflr_64( v ) _mm256_permute4x64_epi64( v, 0x39 )
#define mm256_shufll_64( v ) _mm256_permute4x64_epi64( v, 0x93 )
// Rotate 256 bit vector by one 32 bit element.
#define mm256_shuflr_32( v ) \
_mm256_permutevar8x32_epi32( v, \
m256_const_64( 0x0000000000000007, 0x0000000600000005, \
0x0000000400000003, 0x0000000200000001 ) )
#define mm256_shufll_32( v ) \
_mm256_permutevar8x32_epi32( v, \
m256_const_64( 0x0000000600000005, 0x0000000400000003, \
0x0000000200000001, 0x0000000000000007 ) )
//
// Rotate elements within each 128 bit lane of 256 bit vector.
// Limited 2 input shuffle
#define mm256_shuffle2_64( a, b, c ) \
_mm256_castpd_si256( _mm256_shuffle_pd( _mm256_castsi256_pd( a ), \
_mm256_castsi256_pd( b ), c ) );
#define mm256_shuffle2_32( a, b, c ) \
_mm256_castps_si256( _mm256_shuffle_ps( _mm256_castsi256_ps( a ), \
_mm256_castsi256_ps( b ), c ) );
#define mm256_swap128_64( v ) _mm256_shuffle_epi32( v, 0x4e )
#define mm256_shuflr128_64 mm256_swap128_64
#define mm256_shufll128_64 mm256_swap128_64
#define mm256_shuflr128_32( v ) _mm256_shuffle_epi32( v, 0x39 )
#define mm256_shufll128_32( v ) _mm256_shuffle_epi32( v, 0x93 )
static inline __m256i mm256_shuflr128_x8( const __m256i v, const int c )
{ return _mm256_alignr_epi8( v, v, c ); }
// Swap 32 bit elements in each 64 bit lane.
#define mm256_swap64_32( v ) _mm256_shuffle_epi32( v, 0xb1 )
#define mm256_shuflr64_32 mm256_swap64_32
#define mm256_shufll64_32 mm256_swap64_32
// NOTE: _mm256_shuffle_epi8, like most shuffles, is restricted to 128 bit
// lanes. AVX512, however, supports full vector 8 bit shuffle. The AVX512VL +
// AVX512BW intrinsic _mm256_mask_shuffle_epi8 with a NULL mask, can be used if
// needed for a shuffle that crosses 128 bit lanes. BSWAP doesn't therefore the
// AVX2 version will work here. The bswap control vector is coded to work
// with both versions, bit 4 is ignored in AVX2.
// Reverse byte order in elements, endian bswap.
#define mm256_bswap_64( v ) \
_mm256_shuffle_epi8( v, \
m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) )
#define mm256_bswap_32( v ) \
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ) )
#define mm256_bswap_16( v ) \
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1e1f1c1d1a1b1819, 0x1617141512131011, \
0x0e0f0c0d0a0b0809, 0x0607040502030001, ) )
// Source and destination are pointers, may point to same memory.
// 8 byte qword * 8 qwords * 4 lanes = 256 bytes
#define mm256_block_bswap_64( d, s ) do \
{ \
__m256i ctl = m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) ; \
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
} while(0)
// 4 byte dword * 8 dwords * 8 lanes = 256 bytes
#define mm256_block_bswap_32( d, s ) do \
{ \
__m256i ctl = m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
} while(0)
//
// Rotate two concatenated 256 bit vectors as one 512 bit vector by specified
// number of elements. Rotate is done in place, source arguments are
// overwritten.
// Some of these can use permute but appears to be slower. Maybe a Ryzen
// issue
// _mm256_alignr_epi 64/32 are only available with AVX512 but AVX512 also
// makes these macros unnecessary.
// continue using vror/vrol notation for now to avoid confusion with
// shufl2r/shufl2l macro functions available with AVX512.
#define mm256_swap512_256( v1, v2 ) \
v1 = _mm256_xor_si256( v1, v2 ); \
v2 = _mm256_xor_si256( v1, v2 ); \
v1 = _mm256_xor_si256( v1, v2 );
#endif // __AVX2__
#endif // SIMD_256_H__