Files
cpuminer-opt-gpu/algo/scrypt/pluck.c
Jay D Dee 0d48d573ce v3.9.5
2019-06-26 14:16:01 -04:00

512 lines
15 KiB
C

/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2014 pooler, 2015 Jordan Earls
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cpuminer-config.h"
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#define BLOCK_HEADER_SIZE 80
// windows
#ifndef htobe32
#define htobe32(x) ((uint32_t)htonl((uint32_t)(x)))
#endif
#ifdef _MSC_VER
#define ROTL(a, b) _rotl(a,b)
#define ROTR(a, b) _rotr(a,b)
#else
#define ROTL(a, b) (((a) << b) | ((a) >> (32 - b)))
#define ROTR(a, b) ((a >> b) | (a << (32 - b)))
#endif
#if defined(_MSC_VER) && defined(_M_X64)
#define _VECTOR __vectorcall
#include <intrin.h>
//#include <emmintrin.h> //SSE2
//#include <pmmintrin.h> //SSE3
//#include <tmmintrin.h> //SSSE3
//#include <smmintrin.h> //SSE4.1
//#include <nmmintrin.h> //SSE4.2
//#include <ammintrin.h> //SSE4A
//#include <wmmintrin.h> //AES
//#include <immintrin.h> //AVX
#define OPT_COMPATIBLE
#elif defined(__GNUC__) && defined(__x86_64__)
#include <x86intrin.h>
#define _VECTOR
#endif
static __thread char *scratchbuf;
#ifdef OPT_COMPATIBLE
static void _VECTOR xor_salsa8(__m128i B[4], const __m128i Bx[4], int i)
{
__m128i X0, X1, X2, X3;
if (i <= 128) {
// a xor 0 = a
X0 = B[0] = Bx[0];
X1 = B[1] = Bx[1];
X2 = B[2] = Bx[2];
X3 = B[3] = Bx[3];
} else {
X0 = B[0] = _mm_xor_si128(B[0], Bx[0]);
X1 = B[1] = _mm_xor_si128(B[1], Bx[1]);
X2 = B[2] = _mm_xor_si128(B[2], Bx[2]);
X3 = B[3] = _mm_xor_si128(B[3], Bx[3]);
}
for (i = 0; i < 4; i++) {
/* Operate on columns. */
X1.m128i_u32[0] ^= ROTL(X0.m128i_u32[0] + X3.m128i_u32[0], 7);
X2.m128i_u32[1] ^= ROTL(X1.m128i_u32[1] + X0.m128i_u32[1], 7);
X3.m128i_u32[2] ^= ROTL(X2.m128i_u32[2] + X1.m128i_u32[2], 7);
X0.m128i_u32[3] ^= ROTL(X3.m128i_u32[3] + X2.m128i_u32[3], 7);
X2.m128i_u32[0] ^= ROTL(X1.m128i_u32[0] + X0.m128i_u32[0], 9);
X3.m128i_u32[1] ^= ROTL(X2.m128i_u32[1] + X1.m128i_u32[1], 9);
X0.m128i_u32[2] ^= ROTL(X3.m128i_u32[2] + X2.m128i_u32[2], 9);
X1.m128i_u32[3] ^= ROTL(X0.m128i_u32[3] + X3.m128i_u32[3], 9);
X3.m128i_u32[0] ^= ROTL(X2.m128i_u32[0] + X1.m128i_u32[0], 13);
X0.m128i_u32[1] ^= ROTL(X3.m128i_u32[1] + X2.m128i_u32[1], 13);
X1.m128i_u32[2] ^= ROTL(X0.m128i_u32[2] + X3.m128i_u32[2], 13);
X2.m128i_u32[3] ^= ROTL(X1.m128i_u32[3] + X0.m128i_u32[3], 13);
X0.m128i_u32[0] ^= ROTL(X3.m128i_u32[0] + X2.m128i_u32[0], 18);
X1.m128i_u32[1] ^= ROTL(X0.m128i_u32[1] + X3.m128i_u32[1], 18);
X2.m128i_u32[2] ^= ROTL(X1.m128i_u32[2] + X0.m128i_u32[2], 18);
X3.m128i_u32[3] ^= ROTL(X2.m128i_u32[3] + X1.m128i_u32[3], 18);
/* Operate on rows. */
X0.m128i_u32[1] ^= ROTL(X0.m128i_u32[0] + X0.m128i_u32[3], 7); X1.m128i_u32[2] ^= ROTL(X1.m128i_u32[1] + X1.m128i_u32[0], 7);
X2.m128i_u32[3] ^= ROTL(X2.m128i_u32[2] + X2.m128i_u32[1], 7); X3.m128i_u32[0] ^= ROTL(X3.m128i_u32[3] + X3.m128i_u32[2], 7);
X0.m128i_u32[2] ^= ROTL(X0.m128i_u32[1] + X0.m128i_u32[0], 9); X1.m128i_u32[3] ^= ROTL(X1.m128i_u32[2] + X1.m128i_u32[1], 9);
X2.m128i_u32[0] ^= ROTL(X2.m128i_u32[3] + X2.m128i_u32[2], 9); X3.m128i_u32[1] ^= ROTL(X3.m128i_u32[0] + X3.m128i_u32[3], 9);
X0.m128i_u32[3] ^= ROTL(X0.m128i_u32[2] + X0.m128i_u32[1], 13); X1.m128i_u32[0] ^= ROTL(X1.m128i_u32[3] + X1.m128i_u32[2], 13);
X2.m128i_u32[1] ^= ROTL(X2.m128i_u32[0] + X2.m128i_u32[3], 13); X3.m128i_u32[2] ^= ROTL(X3.m128i_u32[1] + X3.m128i_u32[0], 13);
X0.m128i_u32[0] ^= ROTL(X0.m128i_u32[3] + X0.m128i_u32[2], 18); X1.m128i_u32[1] ^= ROTL(X1.m128i_u32[0] + X1.m128i_u32[3], 18);
X2.m128i_u32[2] ^= ROTL(X2.m128i_u32[1] + X2.m128i_u32[0], 18); X3.m128i_u32[3] ^= ROTL(X3.m128i_u32[2] + X3.m128i_u32[1], 18);
}
B[0] = _mm_add_epi32(B[0], X0);
B[1] = _mm_add_epi32(B[1], X1);
B[2] = _mm_add_epi32(B[2], X2);
B[3] = _mm_add_epi32(B[3], X3);
}
#else
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16], int i)
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
if (i <= 128) {
// a xor 0 = a
x00 = B[ 0] = Bx[ 0]; x01 = B[ 1] = Bx[ 1]; x02 = B[ 2] = Bx[ 2]; x03 = B[ 3] = Bx[ 3];
x04 = B[ 4] = Bx[ 4]; x05 = B[ 5] = Bx[ 5]; x06 = B[ 6] = Bx[ 6]; x07 = B[ 7] = Bx[ 7];
x08 = B[ 8] = Bx[ 8]; x09 = B[ 9] = Bx[ 9]; x10 = B[10] = Bx[10]; x11 = B[11] = Bx[11];
x12 = B[12] = Bx[12]; x13 = B[13] = Bx[13]; x14 = B[14] = Bx[14]; x15 = B[15] = Bx[15];
} else {
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
}
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
#endif
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
do { \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
} while (0)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + sha256_k[i])
static void sha256_transform_volatile(uint32_t *state, uint32_t *block)
{
uint32_t* W=block; //note: block needs to be a mutable 64 int32_t
uint32_t S[8];
uint32_t t0, t1;
int i;
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0);
RNDr(S, W, 1);
RNDr(S, W, 2);
RNDr(S, W, 3);
RNDr(S, W, 4);
RNDr(S, W, 5);
RNDr(S, W, 6);
RNDr(S, W, 7);
RNDr(S, W, 8);
RNDr(S, W, 9);
RNDr(S, W, 10);
RNDr(S, W, 11);
RNDr(S, W, 12);
RNDr(S, W, 13);
RNDr(S, W, 14);
RNDr(S, W, 15);
RNDr(S, W, 16);
RNDr(S, W, 17);
RNDr(S, W, 18);
RNDr(S, W, 19);
RNDr(S, W, 20);
RNDr(S, W, 21);
RNDr(S, W, 22);
RNDr(S, W, 23);
RNDr(S, W, 24);
RNDr(S, W, 25);
RNDr(S, W, 26);
RNDr(S, W, 27);
RNDr(S, W, 28);
RNDr(S, W, 29);
RNDr(S, W, 30);
RNDr(S, W, 31);
RNDr(S, W, 32);
RNDr(S, W, 33);
RNDr(S, W, 34);
RNDr(S, W, 35);
RNDr(S, W, 36);
RNDr(S, W, 37);
RNDr(S, W, 38);
RNDr(S, W, 39);
RNDr(S, W, 40);
RNDr(S, W, 41);
RNDr(S, W, 42);
RNDr(S, W, 43);
RNDr(S, W, 44);
RNDr(S, W, 45);
RNDr(S, W, 46);
RNDr(S, W, 47);
RNDr(S, W, 48);
RNDr(S, W, 49);
RNDr(S, W, 50);
RNDr(S, W, 51);
RNDr(S, W, 52);
RNDr(S, W, 53);
RNDr(S, W, 54);
RNDr(S, W, 55);
RNDr(S, W, 56);
RNDr(S, W, 57);
RNDr(S, W, 58);
RNDr(S, W, 59);
RNDr(S, W, 60);
RNDr(S, W, 61);
RNDr(S, W, 62);
RNDr(S, W, 63);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
// standard sha256 hash
#if 1
static void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
{
uint32_t _ALIGN(64) S[16];
uint32_t _ALIGN(64) T[64];
int i, r;
sha256_init(S);
for (r = len; r > -9; r -= 64) {
if (r < 64)
memset(T, 0, 64);
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
if (r >= 0 && r < 64)
((unsigned char *)T)[r] = 0x80;
for (i = 0; i < 16; i++)
T[i] = be32dec(T + i);
if (r < 56)
T[15] = 8 * len;
//sha256_transform(S, T, 0);
sha256_transform_volatile(S, T);
}
for (i = 0; i < 8; i++)
be32enc((uint32_t *)hash + i, S[i]);
}
#else
#include <openssl/sha.h>
static void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
{
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, data, len);
SHA256_Final(hash, &ctx);
}
#endif
// hash exactly 64 bytes (ie, sha256 block size)
static void sha256_hash512(uint32_t *hash, const uint32_t *data)
{
uint32_t _ALIGN(64) S[16];
uint32_t _ALIGN(64) T[64];
uchar _ALIGN(64) E[64*4] = { 0 };
int i;
sha256_init(S);
for (i = 0; i < 16; i++)
T[i] = be32dec(&data[i]);
sha256_transform_volatile(S, T);
E[3] = 0x80;
E[61] = 0x02; // T[15] = 8 * 64 => 0x200;
sha256_transform_volatile(S, (uint32_t*)E);
for (i = 0; i < 8; i++)
be32enc(&hash[i], S[i]);
}
void pluck_hash(uint32_t *hash, const uint32_t *data, uchar *hashbuffer, const int N)
{
int size = N * 1024;
sha256_hash(hashbuffer, (void*)data, BLOCK_HEADER_SIZE);
memset(&hashbuffer[32], 0, 32);
for(int i = 64; i < size - 32; i += 32)
{
uint32_t _ALIGN(64) randseed[16];
uint32_t _ALIGN(64) randbuffer[16];
uint32_t _ALIGN(64) joint[16];
//i-4 because we use integers for all references against this, and we don't want to go 3 bytes over the defined area
//we could use size here, but then it's probable to use 0 as the value in most cases
int randmax = i - 4;
//setup randbuffer to be an array of random indexes
memcpy(randseed, &hashbuffer[i - 64], 64);
if(i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64);
//else memset(randbuffer, 0, 64);
xor_salsa8((void*)randbuffer, (void*)randseed, i);
memcpy(joint, &hashbuffer[i - 32], 32);
//use the last hash value as the seed
for (int j = 32; j < 64; j += 4)
{
//every other time, change to next random index
//randmax - 32 as otherwise we go beyond memory that's already been written to
uint32_t rand = randbuffer[(j - 32) >> 2] % (randmax - 32);
joint[j >> 2] = *((uint32_t *)&hashbuffer[rand]);
}
sha256_hash512((uint32_t*) &hashbuffer[i], joint);
//setup randbuffer to be an array of random indexes
//use last hash value and previous hash value(post-mixing)
memcpy(randseed, &hashbuffer[i - 32], 64);
if(i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64);
//else memset(randbuffer, 0, 64);
xor_salsa8((void*)randbuffer, (void*)randseed, i);
//use the last hash value as the seed
for (int j = 0; j < 32; j += 2)
{
uint32_t rand = randbuffer[j >> 1] % randmax;
*((uint32_t *)(hashbuffer + rand)) = *((uint32_t *)(hashbuffer + j + randmax));
}
}
memcpy(hash, hashbuffer, 32);
}
int scanhash_pluck( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
volatile uint8_t *restart = &(work_restart[thr_id].restart);
uint32_t n = first_nonce;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0ffff;
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
const uint32_t Htarg = ptarget[7];
do {
//be32enc(&endiandata[19], n);
endiandata[19] = n;
pluck_hash(hash, endiandata, scratchbuf, opt_pluck_n);
if (hash[7] <= Htarg && fulltest(hash, ptarget))
{
*hashes_done = n - first_nonce + 1;
pdata[19] = htobe32(endiandata[19]);
return 1;
}
n++;
} while (n < max_nonce && !(*restart));
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
int64_t pluck_get_max64 ()
{
return 0x1ffLL;
}
bool pluck_miner_thread_init( int thr_id )
{
scratchbuf = malloc( 128 * 1024 );
if ( scratchbuf )
return true;
applog( LOG_ERR, "Thread %u: Pluck buffer allocation failed", thr_id );
return false;
}
bool register_pluck_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->miner_thread_init = (void*)&pluck_miner_thread_init;
gate->scanhash = (void*)&scanhash_pluck;
gate->hash = (void*)&pluck_hash;
gate->set_target = (void*)&scrypt_set_target;
gate->get_max64 = (void*)&pluck_get_max64;
return true;
};