/** * A simple implementation of Blake2b's internal permutation * in the form of a sponge. * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //#include "algo-gate.h" #include #include #include #include #include "sponge.h" #include "lyra2.h" #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) inline void squeeze_2way( uint64_t *State, byte *Out, unsigned int len ) { const int len_m256i = len / 32; const int fullBlocks = len_m256i / BLOCK_LEN_M256I; __m512i* state = (__m512i*)State; __m512i* out = (__m512i*)Out; int i; //Squeezes full blocks for ( i = 0; i < fullBlocks; i++ ) { memcpy_512( out, state, BLOCK_LEN_M256I ); LYRA_ROUND_2WAY_AVX512( state[0], state[1], state[2], state[3] ); out += BLOCK_LEN_M256I; } //Squeezes remaining bytes memcpy_512( out, state, len_m256i % BLOCK_LEN_M256I ); } inline void absorbBlock_2way( uint64_t *State, const uint64_t *In0, const uint64_t *In1 ) { register __m512i state0, state1, state2, state3; __m512i in[3]; casti_m256i( in, 0 ) = casti_m256i( In0, 0 ); casti_m256i( in, 1 ) = casti_m256i( In1, 1 ); casti_m256i( in, 2 ) = casti_m256i( In0, 2 ); casti_m256i( in, 3 ) = casti_m256i( In1, 3 ); casti_m256i( in, 4 ) = casti_m256i( In0, 4 ); casti_m256i( in, 5 ) = casti_m256i( In1, 5 ); state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); state0 = _mm512_xor_si512( state0, in[0] ); state1 = _mm512_xor_si512( state1, in[1] ); state2 = _mm512_xor_si512( state2, in[2] ); LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 ); _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } inline void absorbBlockBlake2Safe_2way( uint64_t *State, const uint64_t *In, const uint64_t nBlocks, const uint64_t block_len ) { register __m512i state0, state1, state2, state3; state0 = state1 = m512_zero; state2 = m512_const4_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL, 0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL ); state3 = m512_const4_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL, 0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL ); for ( int i = 0; i < nBlocks; i++ ) { __m512i *in = (__m512i*)In; state0 = _mm512_xor_si512( state0, in[0] ); state1 = _mm512_xor_si512( state1, in[1] ); LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 ); In += block_len*2; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } inline void reducedSqueezeRow0_2way( uint64_t* State, uint64_t* rowOut, uint64_t nCols ) { int i; //M[row][C-1-col] = H.reduced_squeeze() register __m512i state0, state1, state2, state3; __m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I ); state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < 9; i += 3) { _mm_prefetch( out - i, _MM_HINT_T0 ); _mm_prefetch( out - i - 2, _MM_HINT_T0 ); } for ( i = 0; i < nCols; i++ ) { _mm_prefetch( out - 9, _MM_HINT_T0 ); _mm_prefetch( out - 11, _MM_HINT_T0 ); out[0] = state0; out[1] = state1; out[2] = state2; //Goes to next block (column) that will receive the squeezed data out -= BLOCK_LEN_M256I; LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } inline void reducedDuplexRow1_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowOut, uint64_t nCols ) { int i; register __m512i state0, state1, state2, state3; __m512i *in = (__m512i*)rowIn; __m512i *out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I ); state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { state0 = _mm512_xor_si512( state0, in[0] ); state1 = _mm512_xor_si512( state1, in[1] ); state2 = _mm512_xor_si512( state2, in[2] ); LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); out[0] = _mm512_xor_si512( state0, in[0] ); out[1] = _mm512_xor_si512( state1, in[1] ); out[2] = _mm512_xor_si512( state2, in[2] ); //Input: next column (i.e., next block in sequence) in += BLOCK_LEN_M256I; //Output: goes to previous column out -= BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols ) { int i; register __m512i state0, state1, state2, state3; __m512i* in = (__m512i*)rowIn; __m512i* inout = (__m512i*)rowInOut; __m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I ); state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout[0] ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout[1] ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout[2] ) ); LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); out[0] = _mm512_xor_si512( state0, in[0] ); out[1] = _mm512_xor_si512( state1, in[1] ); out[2] = _mm512_xor_si512( state2, in[2] ); { register __m512i t0, t1, t2; //M[row*][col] = M[row*][col] XOR rotW(rand) t0 = _mm512_permutex_epi64( state0, 0x93 ); t1 = _mm512_permutex_epi64( state1, 0x93 ); t2 = _mm512_permutex_epi64( state2, 0x93 ); inout[0] = _mm512_xor_si512( inout[0], _mm512_mask_blend_epi64( 0x11, t0, t2 ) ); inout[1] = _mm512_xor_si512( inout[1], _mm512_mask_blend_epi64( 0x11, t1, t0 ) ); inout[2] = _mm512_xor_si512( inout[2], _mm512_mask_blend_epi64( 0x11, t2, t1 ) ); } //Inputs: next column (i.e., next block in sequence) in += BLOCK_LEN_M256I; inout += BLOCK_LEN_M256I; //Output: goes to previous column out -= BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } // reduced duplex row has three version depending on rows inout. // If they are the same the fastest version can be used, equivalent to // linear version. // If either rowinout overlaps with rowout the slowest version is used, // to refresh local data after overwriting rowout. // Otherwise the normal version is used, slower than unified, faster than // overlap. // // The likelyhood of each case depends on the number of rows. More rows // means unified and overlap are both less likely. // Unified has a 1 in Nrows chances, // Overlap has 2 in Nrows chance reduced to 1 in Nrows because if both // overlap it's unified. // As a result normal is Nrows-2 / Nrows. // for 4 rows: 1 unified, 2 overlap, 1 normal. // for 8 rows: 1 unified, 2 overlap, 56 normal. static inline void reducedDuplexRow_2way_normal( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols) { int i; register __m512i state0, state1, state2, state3; __m512i *in = (__m512i*)rowIn; __m512i *inout0 = (__m512i*)rowInOut0; __m512i *inout1 = (__m512i*)rowInOut1; __m512i *out = (__m512i*)rowOut; register __m512i io0, io1, io2; state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { //Absorbing "M[prev] [+] M[row*]" io0 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 ), _mm512_load_si512( (__m512i*)inout1 ) ); io1 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +1 ), _mm512_load_si512( (__m512i*)inout1 +1 ) ); io2 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +2 ), _mm512_load_si512( (__m512i*)inout1 +2 ) ); state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0 ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1 ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2 ) ); //Applies the reduced-round transformation f to the sponge's state LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); { register __m512i t0, t1, t2; //M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand) t0 = _mm512_permutex_epi64( state0, 0x93 ); t1 = _mm512_permutex_epi64( state1, 0x93 ); t2 = _mm512_permutex_epi64( state2, 0x93 ); io0 = _mm512_xor_si512( io0, _mm512_mask_blend_epi64( 0x11, t0, t2 ) ); io1 = _mm512_xor_si512( io1, _mm512_mask_blend_epi64( 0x11, t1, t0 ) ); io2 = _mm512_xor_si512( io2, _mm512_mask_blend_epi64( 0x11, t2, t1 ) ); //M[rowOut][col] = M[rowOut][col] XOR rand out[0] = _mm512_xor_si512( out[0], state0 ); out[1] = _mm512_xor_si512( out[1], state1 ); out[2] = _mm512_xor_si512( out[2], state2 ); } _mm512_mask_store_epi64( inout0, 0x0f, io0 ); _mm512_mask_store_epi64( inout1, 0xf0, io0 ); _mm512_mask_store_epi64( inout0 +1, 0x0f, io1 ); _mm512_mask_store_epi64( inout1 +1, 0xf0, io1 ); _mm512_mask_store_epi64( inout0 +2, 0x0f, io2 ); _mm512_mask_store_epi64( inout1 +2, 0xf0, io2 ); //Goes to next block in += BLOCK_LEN_M256I; inout0 += BLOCK_LEN_M256I; inout1 += BLOCK_LEN_M256I; out += BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } static inline void reducedDuplexRow_2way_overlap( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols) { int i; register __m512i state0, state1, state2, state3; __m512i *in = (__m512i*)rowIn; __m512i *inout0 = (__m512i*)rowInOut0; __m512i *inout1 = (__m512i*)rowInOut1; __m512i *out = (__m512i*)rowOut; // inout_ovly io; ovly_512 io0, io1, io2; state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { //Absorbing "M[prev] [+] M[row*]" io0.v512 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 ), _mm512_load_si512( (__m512i*)inout1 ) ); io1.v512 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +1 ), _mm512_load_si512( (__m512i*)inout1 +1 ) ); io2.v512 = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +2 ), _mm512_load_si512( (__m512i*)inout1 +2 ) ); state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0.v512 ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1.v512 ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2.v512 ) ); /* io.v512[0] = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 ), _mm512_load_si512( (__m512i*)inout1 ) ); io.v512[1] = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +1 ), _mm512_load_si512( (__m512i*)inout1 +1 ) ); io.v512[2] = _mm512_mask_blend_epi64( 0xf0, _mm512_load_si512( (__m512i*)inout0 +2 ), _mm512_load_si512( (__m512i*)inout1 +2 ) ); state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io.v512[0] ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io.v512[1] ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io.v512[2] ) ); */ //Applies the reduced-round transformation f to the sponge's state LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); { __m512i t0, t1, t2; //M[rowOut][col] = M[rowOut][col] XOR rand out[0] = _mm512_xor_si512( out[0], state0 ); out[1] = _mm512_xor_si512( out[1], state1 ); out[2] = _mm512_xor_si512( out[2], state2 ); // if out is the same row as inout, update with new data. if ( rowOut == rowInOut0 ) { io0.v512 = _mm512_mask_blend_epi64( 0x0f, io0.v512, out[0] ); io1.v512 = _mm512_mask_blend_epi64( 0x0f, io1.v512, out[1] ); io2.v512 = _mm512_mask_blend_epi64( 0x0f, io2.v512, out[2] ); } if ( rowOut == rowInOut1 ) { io0.v512 = _mm512_mask_blend_epi64( 0xf0, io0.v512, out[0] ); io1.v512 = _mm512_mask_blend_epi64( 0xf0, io1.v512, out[1] ); io2.v512 = _mm512_mask_blend_epi64( 0xf0, io2.v512, out[2] ); } /* if ( rowOut == rowInOut0 ) { io.v512[0] = _mm512_mask_blend_epi64( 0x0f, io.v512[0], out[0] ); io.v512[1] = _mm512_mask_blend_epi64( 0x0f, io.v512[1], out[1] ); io.v512[2] = _mm512_mask_blend_epi64( 0x0f, io.v512[2], out[2] ); } if ( rowOut == rowInOut1 ) { io.v512[0] = _mm512_mask_blend_epi64( 0xf0, io.v512[0], out[0] ); io.v512[1] = _mm512_mask_blend_epi64( 0xf0, io.v512[1], out[1] ); io.v512[2] = _mm512_mask_blend_epi64( 0xf0, io.v512[2], out[2] ); } */ //M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand) t0 = _mm512_permutex_epi64( state0, 0x93 ); t1 = _mm512_permutex_epi64( state1, 0x93 ); t2 = _mm512_permutex_epi64( state2, 0x93 ); io0.v512 = _mm512_xor_si512( io0.v512, _mm512_mask_blend_epi64( 0x11, t0, t2 ) ); io1.v512 = _mm512_xor_si512( io1.v512, _mm512_mask_blend_epi64( 0x11, t1, t0 ) ); io2.v512 = _mm512_xor_si512( io2.v512, _mm512_mask_blend_epi64( 0x11, t2, t1 ) ); } casti_m256i( inout0, 0 ) = io0.v256lo; casti_m256i( inout1, 1 ) = io0.v256hi; casti_m256i( inout0, 2 ) = io1.v256lo; casti_m256i( inout1, 3 ) = io1.v256hi; casti_m256i( inout0, 4 ) = io2.v256lo; casti_m256i( inout1, 5 ) = io2.v256hi; /* _mm512_mask_store_epi64( inout0, 0x0f, io.v512[0] ); _mm512_mask_store_epi64( inout1, 0xf0, io.v512[0] ); _mm512_mask_store_epi64( inout0 +1, 0x0f, io.v512[1] ); _mm512_mask_store_epi64( inout1 +1, 0xf0, io.v512[1] ); _mm512_mask_store_epi64( inout0 +2, 0x0f, io.v512[2] ); _mm512_mask_store_epi64( inout1 +2, 0xf0, io.v512[2] ); */ //Goes to next block in += BLOCK_LEN_M256I; inout0 += BLOCK_LEN_M256I; inout1 += BLOCK_LEN_M256I; out += BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } static inline void reducedDuplexRow_2way_overlap_X( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols) { int i; register __m512i state0, state1, state2, state3; __m512i *in = (__m512i*)rowIn; __m256i *inout0 = (__m256i*)rowInOut0; __m256i *inout1 = (__m256i*)rowInOut1; __m512i *out = (__m512i*)rowOut; inout_ovly inout; __m512i t0, t1, t2; state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { //Absorbing "M[prev] [+] M[row*]" inout.v256[0] = inout0[0]; inout.v256[1] = inout1[1]; inout.v256[2] = inout0[2]; inout.v256[3] = inout1[3]; inout.v256[4] = inout0[4]; inout.v256[5] = inout1[5]; state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout.v512[0] ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout.v512[1] ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout.v512[2] ) ); //Applies the reduced-round transformation f to the sponge's state LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); //M[rowOut][col] = M[rowOut][col] XOR rand out[0] = _mm512_xor_si512( out[0], state0 ); out[1] = _mm512_xor_si512( out[1], state1 ); out[2] = _mm512_xor_si512( out[2], state2 ); // if inout is the same row as out it was just overwritten, reload. if ( rowOut == rowInOut0 ) { inout.v256[0] = ( (__m256i*)out )[0]; inout.v256[2] = ( (__m256i*)out )[2]; inout.v256[4] = ( (__m256i*)out )[4]; } if ( rowOut == rowInOut1 ) { inout.v256[1] = ( (__m256i*)out )[1]; inout.v256[3] = ( (__m256i*)out )[3]; inout.v256[5] = ( (__m256i*)out )[5]; } //M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand) t0 = _mm512_permutex_epi64( state0, 0x93 ); t1 = _mm512_permutex_epi64( state1, 0x93 ); t2 = _mm512_permutex_epi64( state2, 0x93 ); inout.v512[0] = _mm512_xor_si512( inout.v512[0], _mm512_mask_blend_epi64( 0x11, t0, t2 ) ); inout.v512[1] = _mm512_xor_si512( inout.v512[1], _mm512_mask_blend_epi64( 0x11, t1, t0 ) ); inout.v512[2] = _mm512_xor_si512( inout.v512[2], _mm512_mask_blend_epi64( 0x11, t2, t1 ) ); inout0[0] = inout.v256[0]; inout1[1] = inout.v256[1]; inout0[2] = inout.v256[2]; inout1[3] = inout.v256[3]; inout0[4] = inout.v256[4]; inout1[5] = inout.v256[5]; //Goes to next block in += BLOCK_LEN_M256I; inout0 += BLOCK_LEN_M256I * 2; inout1 += BLOCK_LEN_M256I * 2; out += BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } // rowInOut0 == rowInOut1, fastest, least likely: 1 / nrows static inline void reducedDuplexRow_2way_unified( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowOut, uint64_t nCols) { int i; register __m512i state0, state1, state2, state3; __m512i *in = (__m512i*)rowIn; __m512i *inout = (__m512i*)rowInOut0; __m512i *out = (__m512i*)rowOut; state0 = _mm512_load_si512( (__m512i*)State ); state1 = _mm512_load_si512( (__m512i*)State + 1 ); state2 = _mm512_load_si512( (__m512i*)State + 2 ); state3 = _mm512_load_si512( (__m512i*)State + 3 ); for ( i = 0; i < nCols; i++ ) { //Absorbing "M[prev] [+] M[row*]" state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout[0] ) ); state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout[1] ) ); state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout[2] ) ); //Applies the reduced-round transformation f to the sponge's state LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 ); { register __m512i t0, t1, t2; //M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand) t0 = _mm512_permutex_epi64( state0, 0x93 ); t1 = _mm512_permutex_epi64( state1, 0x93 ); t2 = _mm512_permutex_epi64( state2, 0x93 ); inout[0] = _mm512_xor_si512( inout[0], _mm512_mask_blend_epi64( 0x11, t0, t2 ) ); inout[1] = _mm512_xor_si512( inout[1], _mm512_mask_blend_epi64( 0x11, t1, t0 ) ); inout[2] = _mm512_xor_si512( inout[2], _mm512_mask_blend_epi64( 0x11, t2, t1 ) ); out[0] = _mm512_xor_si512( out[0], state0 ); out[1] = _mm512_xor_si512( out[1], state1 ); out[2] = _mm512_xor_si512( out[2], state2 ); } //Goes to next block in += BLOCK_LEN_M256I; inout += BLOCK_LEN_M256I; out += BLOCK_LEN_M256I; } _mm512_store_si512( (__m512i*)State, state0 ); _mm512_store_si512( (__m512i*)State + 1, state1 ); _mm512_store_si512( (__m512i*)State + 2, state2 ); _mm512_store_si512( (__m512i*)State + 3, state3 ); } // Multi level specialization. // There are three cases that need to be handled: // unified: inout data is contiguous, fastest, unlikely. // normal: inout data is not contiguous with no overlap with out, likely. // overlap: inout data is not contiguous and one lane overlaps with out // slowest, unlikely. // // In adition different algos prefer different coding. x25x and x22i prefer // 256 bit memory acceses to handle the diverged data while all other // algos prefer 512 bit memory accesses with masking and blending. // Wrapper inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols ) { if ( rowInOut0 == rowInOut1 ) reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols ); else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) ) reducedDuplexRow_2way_overlap( State, rowIn, rowInOut0, rowInOut1, rowOut, nCols ); else reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1, rowOut, nCols ); } inline void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols ) { if ( rowInOut0 == rowInOut1 ) reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols ); else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) ) { asm volatile ( "nop" ); // Prevent GCC from optimizing reducedDuplexRow_2way_overlap_X( State, rowIn, rowInOut0, rowInOut1, rowOut, nCols ); } else reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1, rowOut, nCols ); } #endif // AVX512