/** * Implementation of the Lyra2 Password Hashing Scheme (PHS). * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "compat.h" #include "lyra2.h" #include "sponge.h" /** * Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords * whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, * where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all * integer parameters (treated as type "unsigned int") in the order they are provided, plus the value * of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). * * @param K The derived key to be output by the algorithm * @param kLen Desired key length * @param pwd User password * @param pwdlen Password length * @param salt Salt * @param saltlen Salt length * @param timeCost Parameter to determine the processing time (T) * @param nRows Number or rows of the memory matrix (R) * @param nCols Number of columns of the memory matrix (C) * * @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) */ #if 0 int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 // int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy //====================================================================/ //=== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; uint64_t *ptrWord = wholeMatrix; // memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows ); //=== Getting the password + salt + basil padded with 10*1 ==========// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen) ); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block // from here on it's all simd acces to state and matrix // define vector pointers and adjust sizes and pointer offsets //================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // initState( state ); //========================= Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN ); /* for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //===================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //----------------------------------------------- rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //---------------------------------------------------- row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //---------------------------------------------------- } while (row != 0); } //===================== Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); return 0; } #endif #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) // This version is currently only used by REv3 and has some hard coding // specific to v3 such as input data size of 32 bytes. // // Similarly with REv2. Thedifference with REv3 isn't clear and maybe // they can be merged. // // RE is used by RE, allium. The main difference between RE and REv2 // in the matrix size. // // Z also needs to support 80 byte input as well as 32 byte, and odd // matrix sizes like 330 rows. It is used by lyra2z330, lyra2z, lyra2h. ///////////////////////////////////////////////// // 2 way 256 // drop salt, salt len arguments, hard code some others. // Data is interleaved 2x256. //int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen, // const void *pwd, uint64_t pwdlen, uint64_t timeCost, // uint64_t nRows, uint64_t nCols ) // hard coded for 32 byte input as well as matrix size. // Other required versions include 80 byte input and different block // sizez int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[32]; int64_t row = 2; int64_t prev = 1; int64_t rowa0 = 0; int64_t rowa1 = 0; int64_t tau; int64_t step = 1; int64_t window = 2; int64_t gap = 1; // int64_t i; //auxiliary iteration counter // int64_t v64; // 64bit var for memcpy uint64_t instance0 = 0; uint64_t instance1 = 0; //====================================================================/ const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; const int64_t BLOCK_LEN = BLOCK_LEN_BLAKE2_SAFE_INT64; uint64_t *ptrWord = wholeMatrix; // 2 way 256 rewrite. Salt always == password, and data is interleaved, // need to build in parallel as pw isalready interleaved. // { password, (64 or 80 bytes) // salt, (64 or 80 bytes) = same as password // Klen, (u64) = 32 bytes // pwdlen, (u64) // saltlen, (u64) // timecost, (u64) // nrows, (u64) // ncols, (u64) // 0x80, (byte) // { 0 .. 0 }, // 1 (byte) // } // It's all u64 so don't use byte // input is usually 32 maybe 64, both are aligned to 256 bit vector. // 80 byte inpput is not aligned complicating matters for lyra2z. int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; uint64_t *ptr = wholeMatrix; uint64_t *pw = (uint64_t*)pwd; memcpy( ptr, pw, 2*pwdlen ); // password ptr += pwdlen>>2; memcpy( ptr, pw, 2*pwdlen ); // password lane 1 ptr += pwdlen>>2; // now build the rest interleaving on the fly. ptr[0] = ptr[ 4] = kLen; ptr[1] = ptr[ 5] = pwdlen; ptr[2] = ptr[ 6] = pwdlen; // saltlen ptr[3] = ptr[ 7] = timeCost; ptr[8] = ptr[12] = nRows; ptr[9] = ptr[13] = nCols; ptr[10] = ptr[14] = 0x80; ptr[11] = ptr[15] = 0x0100000000000000; ptr = wholeMatrix; /* // do it the old way to compare. uint64_t pb[512]; byte* ptrByte = (byte*)pb; //Prepends the password (use salt for testing) memcpy( ptrByte, salt, saltlen ); ptrByte += saltlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen) ); memcpy(ptrByte, &kLen, 8); ptrByte += 8; memcpy(ptrByte, &pwdlen, 8); ptrByte += 8; memcpy(ptrByte, &saltlen, 8); ptrByte += 8; memcpy(ptrByte, &timeCost, 8); ptrByte += 8; memcpy(ptrByte, &nRows, 8); ptrByte += 8; memcpy(ptrByte, &nCols, 8); ptrByte += 8; //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) pb; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block */ // display the data printf("LYRA2REV3 data, blocks= %d\n", nBlocksInput); /* uint64_t* m = (uint64_t*)wholeMatrix; printf("Lyra2v3 1: blocklensafe %d\n", BLOCK_LEN_BLAKE2_SAFE_BYTES); printf("pb: %016lx %016lx %016lx %016lx\n",pb[0],pb[1],pb[2],pb[3]); printf("pb: %016lx %016lx %016lx %016lx\n",pb[4],pb[5],pb[6],pb[7]); printf("pb: %016lx %016lx %016lx %016lx\n",pb[8],pb[8],pb[10],pb[11]); printf("pb: %016lx %016lx %016lx %016lx\n",pb[12],pb[13],pb[14],pb[15]); printf("data V: %016lx %016lx %016lx %016lx\n",m[0],m[1],m[2],m[3]); printf("data V: %016lx %016lx %016lx %016lx\n",m[4],m[5],m[6],m[7]); printf("data V: %016lx %016lx %016lx %016lx\n",m[8],m[8],m[10],m[11]); printf("data V: %016lx %016lx %016lx %016lx\n",m[12],m[13],m[14],m[15]); printf("data V: %016lx %016lx %016lx %016lx\n",m[16],m[17],m[18],m[19]); printf("data V: %016lx %016lx %016lx %016lx\n",m[20],m[21],m[22],m[23]); printf("data V: %016lx %016lx %016lx %016lx\n",m[24],m[25],m[26],m[27]); printf("data V: %016lx %016lx %016lx %016lx\n",m[28],m[29],m[30],m[31]); */ // from here on it's all simd acces to state and matrix // define vector pointers and adjust sizes and pointer offsets uint64_t _ALIGN(256) st[16]; ptrWord = wholeMatrix; absorbBlockBlake2Safe_2way( state, ptrWord, nBlocksInput, BLOCK_LEN ); uint64_t *p = wholeMatrix; printf("wholematrix[0]\n"); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[2*ROW_LEN_INT64]; printf("wholematrix[1]\n"); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[4*ROW_LEN_INT64]; printf("wholematrix[2]\n"); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[6*ROW_LEN_INT64]; printf("wholematrix[3]\n"); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); //printf("SV1: %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); /* absorbBlockBlake2Safe( st, pb, nBlocksInput, BLOCK_LEN ); printf("SV: %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SS: %016lx %016lx %016lx %016lx\n",st[0],st[1],st[2],st[3]); */ reducedSqueezeRow0_2way( state, &wholeMatrix[0], nCols ); // At this point the entire matrix should be filled but only col 0 is. // The others are unchanged or the display offsets are wrong. p = wholeMatrix; printf("wholematrix[0] %x\n",wholeMatrix); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[32],p[33],p[34],p[35]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[36],p[37],p[38],p[39]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[40],p[41],p[42],p[43]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[44],p[45],p[46],p[47]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[48],p[49],p[50],p[51]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[52],p[53],p[54],p[55]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[56],p[57],p[58],p[59]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[60],p[61],p[62],p[63]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[64],p[65],p[66],p[67]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[68],p[69],p[70],p[71]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[72],p[73],p[74],p[75]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[76],p[77],p[78],p[79]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[80],p[81],p[82],p[83]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[84],p[85],p[86],p[87]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[88],p[89],p[90],p[91]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[92],p[93],p[94],p[95]); p = &wholeMatrix[2*ROW_LEN_INT64]; printf("wholematrix[1] %x\n", &wholeMatrix[2*ROW_LEN_INT64]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[4*ROW_LEN_INT64]; printf("wholematrix[2] %x\n",&wholeMatrix[4*ROW_LEN_INT64]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[6*ROW_LEN_INT64]; printf("wholematrix[3] %x\n",&wholeMatrix[6*ROW_LEN_INT64]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); //printf("SV2 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); /* printf("SV2 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]); printf("SV2 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]); */ reducedDuplexRow1_2way( state, &wholeMatrix[0], &wholeMatrix[2*ROW_LEN_INT64], nCols); //printf("SV3 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); /* printf("SV3 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]); printf("SV3 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]); */ p = wholeMatrix; printf("wholematrix[0]\n"); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[2*ROW_LEN_INT64]; printf("wholematrix[1]\n"); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[4*ROW_LEN_INT64]; printf("wholematrix[2]\n"); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[6*ROW_LEN_INT64]; printf("wholematrix[3]\n"); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); do { reducedDuplexRowSetup_2way( state, &wholeMatrix[2*prev*ROW_LEN_INT64], &wholeMatrix[2*rowa0*ROW_LEN_INT64], &wholeMatrix[2*row*ROW_LEN_INT64], nCols ); rowa0 = (rowa0 + step) & (window - 1); prev = row; row++; if (rowa0 == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); p = wholeMatrix; printf("wholematrix[0]\n"); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[2*ROW_LEN_INT64]; printf("wholematrix[1]\n"); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[4*ROW_LEN_INT64]; printf("wholematrix[2]\n"); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); p = &wholeMatrix[6*ROW_LEN_INT64]; printf("wholematrix[3]\n"); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); //printf("SV5 prev= %d\n",prev); /* printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]); printf("SV4 S %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]); */ //printf("Lyra2v3 4\n"); uint64_t *ptr0 = wholeMatrix; // base address for each lane uint64_t *ptr1 = wholeMatrix + 4; // convert a simple offset to an index into interleaved data. // good for state and 4 row matrix. // index = ( int( off / 4 ) * 2 ) + ( off mod 4 ) #define offset_to_index( o ) \ ( ( ( (uint64_t)( (o) & 0xf) / 4 ) * 8 ) + ( (o) % 4 ) ) row = 0; for (tau = 1; tau <= timeCost; tau++) { step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1; do { // This part is not parallel, rowa will be different for each lane. // state (u64[16]) is interleaved 2x256, need to extract seperately // and figure out where the data is when interleaved. // &state[0] (or matrix) is the start of lane 0, while &state[4] // is the start of lane 1. From there there are 4 consecutive elements // followed by 4 elements from the other lane that must be skipped. povly ptr; ptr.u64 = wholeMatrix; /* printf("SV4a %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]); printf("SV4a %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]); * //printf("SV4a o to i %016lx = %016lx\n", instance0, offset_to_index( instance0 ) ); */ instance0 = state[ offset_to_index( instance0 ) ]; instance1 = (&state[4])[ offset_to_index( instance1 ) ]; printf("SV4b o to i %016lx = %016lx, state0 %016lx\n", instance0, offset_to_index( instance0 ), state[offset_to_index( instance0 )] ); printf("SV4b o to i %016lx = %016lx, state1 %016lx\n", instance1, offset_to_index( instance1 ), (state+4)[offset_to_index( instance1 )] ); //printf("SV4b lane 1 instance1 = %d, rowa1= %d\n",instance1,rowa1); rowa0 = state[ offset_to_index( instance0 ) ] & (unsigned int)(nRows-1); rowa1 = (state+4)[ offset_to_index( instance1 ) ] & (unsigned int)(nRows-1); // matrix[prev] ie row 0, is messed up after rdr for row 1. ok after rdr 0 //printf("SV5 lane 1 instance1= %016lx, rowa1= %d\n",instance1,rowa1); printf("SV5 row= %d, step= %d\n",row,step); printf("SV5 instance0 %016lx, rowa0 %d, p0 %016lx\n",instance0,rowa0,ptr0[ 2* rowa0 * ROW_LEN_INT64 ]); printf("SV5 instance1 %016lx, rowa1 %d, p1 %016lx\n",instance1,rowa1,ptr1[ 2* rowa1 * ROW_LEN_INT64 ]); uint64_t *p = &wholeMatrix[2*rowa1*ROW_LEN_INT64]; printf("SV5 prev= %d\n",prev); /* printf("SV5 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]); printf("SV5 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]); */ reducedDuplexRow_2way( state, ptr, prev, rowa0, rowa1, row, nCols ); /* reducedDuplexRow_2way( state, &wholeMatrix[ 2* prev * ROW_LEN_INT64 ], &ptr0[ 2* rowa0 * ROW_LEN_INT64 ], &ptr1[ 2* rowa1 * ROW_LEN_INT64 ], &wholeMatrix[ 2* row*ROW_LEN_INT64], nCols ); */ /* printf("SV6 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[271]); printf("SV6 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]); */ /* instance = state[instance & 0xF]; rowa = state[instance & 0xF] & (unsigned int)(nRows-1); reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); */ // End of divergence. prev = row; row = (row + step) & (unsigned int)(nRows-1); } while ( row != 0 ); } printf("SV7 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]); // rowa mismatches here so need to do a split read absorbBlock_2way( state, &wholeMatrix[2*rowa0*ROW_LEN_INT64] ); squeeze_2way( state, K, (unsigned int) kLen ); return 0; } #undef offset_to_index #endif // AVX512 #if 0 ////////////////////////////////////////////////// int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //========================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 // int64_t i; //auxiliary iteration counter //=======================================================================/ //======= Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows ); //==== Getting the password + salt + basil padded with 10*1 ============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding uint64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof (uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES ); //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &pwdlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &saltlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &timeCost, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nRows, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nCols, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //=================== Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // uint64_t *state = _mm_malloc(16 * sizeof(uint64_t), 32); // if (state == NULL) { // return -1; // } // initState( state ); //============================== Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits uint64_t *ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN_BLAKE2_SAFE_INT64 ); /* for ( i = 0; i < nBlocksInput; i++ ) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN_BLAKE2_SAFE_INT64; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0(state, &wholeMatrix[0], nCols); //The locally copied password is most likely overwritten here reducedDuplexRow1(state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //======================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for ( tau = 1; tau <= timeCost; tau++ ) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //---------------------------------------------------------------------- //rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //----------------------------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //--------------------------------------------------------------- //row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //-------------------------------------------------------------------- } while (row != 0); } //========================= Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze( state, K, kLen ); return 0; } // Lyra2RE doesn't like the new wholeMatrix implementation int LYRA2RE( void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy //====================================================================/ //=== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; i = (int64_t)ROW_LEN_BYTES * nRows; uint64_t *wholeMatrix = _mm_malloc( i, 64 ); if (wholeMatrix == NULL) return -1; #if defined(__AVX2__) memset_zero_256( (__m256i*)wholeMatrix, i>>5 ); #elif defined(__SSE2__) memset_zero_128( (__m128i*)wholeMatrix, i>>4 ); #else memset( wholeMatrix, 0, i ); #endif uint64_t *ptrWord = wholeMatrix; //=== Getting the password + salt + basil padded with 10*1 ==========// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; // memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES // - (saltlen + pwdlen) ); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // initState( state ); //========================= Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN ); /* for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //===================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //----------------------------------------------- rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //---------------------------------------------------- row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //---------------------------------------------------- } while (row != 0); } //===================== Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); //================== Freeing the memory =============================// _mm_free(wholeMatrix); return 0; } #endif