/* hash.c Aug 2011 * groestl512-hash-4way https://github.com/JayDDee/cpuminer-opt 2019-12. * * Groestl implementation for different versions. * Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer * * This code is placed in the public domain */ // Optimized for hash and data length that are integrals of __m128i #include #include "groestl256-intr-4way.h" #include "miner.h" #include "simd-utils.h" #if defined(__AVX2__) && defined(__VAES__) #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen ) { int i; ctx->hashlen = hashlen; for ( i = 0; i < SIZE256; i++ ) { ctx->chaining[i] = m512_zero; ctx->buffer[i] = m512_zero; } // The only non-zero in the IV is len. It can be hard coded. ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 ); ctx->buf_ptr = 0; ctx->rem_ptr = 0; return 0; } int groestl256_4way_full( groestl256_4way_context* ctx, void* output, const void* input, uint64_t datalen ) { const int len = (int)datalen >> 4; const int hashlen_m128i = 32 >> 4; // bytes to __m128i const int hash_offset = SIZE256 - hashlen_m128i; uint64_t blocks = len / SIZE256; __m512i* in = (__m512i*)input; int i; // if (ctx->chaining == NULL || ctx->buffer == NULL) // return 1; for ( i = 0; i < SIZE256; i++ ) { ctx->chaining[i] = m512_zero; ctx->buffer[i] = m512_zero; } // The only non-zero in the IV is len. It can be hard coded. ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 ); ctx->buf_ptr = 0; // --- update --- // digest any full blocks, process directly from input for ( i = 0; i < blocks; i++ ) TF512_4way( ctx->chaining, &in[ i * SIZE256 ] ); ctx->buf_ptr = blocks * SIZE256; // copy any remaining data to buffer for ( i = 0; i < len % SIZE256; i++ ) ctx->buffer[ i ] = in[ ctx->buf_ptr + i ]; // use i as rem_ptr in final //--- final --- blocks++; // adjust for final block if ( i == SIZE256 - 1 ) { // only 1 vector left in buffer, all padding at once ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 ); } else { // add first padding ctx->buffer[i] = m512_const2_64( 0, 0x80 ); // add zero padding for ( i += 1; i < SIZE256 - 1; i++ ) ctx->buffer[i] = m512_zero; // add length padding, second last byte is zero unless blocks > 255 ctx->buffer[i] = m512_const2_64( blocks << 56, 0 ); } // digest final padding block and do output transform TF512_4way( ctx->chaining, ctx->buffer ); OF512_4way( ctx->chaining ); // store hash result in output for ( i = 0; i < hashlen_m128i; i++ ) casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ]; return 0; } int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output, const void* input, uint64_t databitlen ) { const int len = (int)databitlen / 128; const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i const int hash_offset = SIZE256 - hashlen_m128i; int rem = ctx->rem_ptr; uint64_t blocks = len / SIZE256; __m512i* in = (__m512i*)input; int i; // --- update --- // digest any full blocks, process directly from input for ( i = 0; i < blocks; i++ ) TF512_4way( ctx->chaining, &in[ i * SIZE256 ] ); ctx->buf_ptr = blocks * SIZE256; // copy any remaining data to buffer, it may already contain data // from a previous update for a midstate precalc for ( i = 0; i < len % SIZE256; i++ ) ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ]; i += rem; // use i as rem_ptr in final //--- final --- blocks++; // adjust for final block if ( i == SIZE256 - 1 ) { // only 1 vector left in buffer, all padding at once ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 ); } else { // add first padding ctx->buffer[i] = m512_const2_64( 0, 0x80 ); // add zero padding for ( i += 1; i < SIZE256 - 1; i++ ) ctx->buffer[i] = m512_zero; // add length padding, second last byte is zero unless blocks > 255 ctx->buffer[i] = m512_const2_64( blocks << 56, 0 ); } // digest final padding block and do output transform TF512_4way( ctx->chaining, ctx->buffer ); OF512_4way( ctx->chaining ); // store hash result in output for ( i = 0; i < hashlen_m128i; i++ ) casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ]; return 0; } #endif // AVX512 // AVX2 + VAES int groestl256_2way_init( groestl256_2way_context* ctx, uint64_t hashlen ) { int i; ctx->hashlen = hashlen; // if (ctx->chaining == NULL || ctx->buffer == NULL) // return 1; for ( i = 0; i < SIZE256; i++ ) { ctx->chaining[i] = m256_zero; ctx->buffer[i] = m256_zero; } // The only non-zero in the IV is len. It can be hard coded. ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 ); ctx->buf_ptr = 0; ctx->rem_ptr = 0; return 0; } int groestl256_2way_full( groestl256_2way_context* ctx, void* output, const void* input, uint64_t datalen ) { const int len = (int)datalen >> 4; const int hashlen_m128i = 32 >> 4; // bytes to __m128i const int hash_offset = SIZE256 - hashlen_m128i; uint64_t blocks = len / SIZE256; __m256i* in = (__m256i*)input; int i; for ( i = 0; i < SIZE256; i++ ) { ctx->chaining[i] = m256_zero; ctx->buffer[i] = m256_zero; } // The only non-zero in the IV is len. It can be hard coded. ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 ); ctx->buf_ptr = 0; // --- update --- // digest any full blocks, process directly from input for ( i = 0; i < blocks; i++ ) TF512_2way( ctx->chaining, &in[ i * SIZE256 ] ); ctx->buf_ptr = blocks * SIZE256; // copy any remaining data to buffer for ( i = 0; i < len % SIZE256; i++ ) ctx->buffer[ i ] = in[ ctx->buf_ptr + i ]; // use i as rem_ptr in final //--- final --- blocks++; // adjust for final block if ( i == SIZE256 - 1 ) { // only 1 vector left in buffer, all padding at once ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 ); } else { // add first padding ctx->buffer[i] = m256_const2_64( 0, 0x80 ); // add zero padding for ( i += 1; i < SIZE256 - 1; i++ ) ctx->buffer[i] = m256_zero; // add length padding, second last byte is zero unless blocks > 255 ctx->buffer[i] = m256_const2_64( blocks << 56, 0 ); } // digest final padding block and do output transform TF512_2way( ctx->chaining, ctx->buffer ); OF512_2way( ctx->chaining ); // store hash result in output for ( i = 0; i < hashlen_m128i; i++ ) casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ]; return 0; } int groestl256_2way_update_close( groestl256_2way_context* ctx, void* output, const void* input, uint64_t databitlen ) { const int len = (int)databitlen / 128; const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i const int hash_offset = SIZE256 - hashlen_m128i; int rem = ctx->rem_ptr; uint64_t blocks = len / SIZE256; __m256i* in = (__m256i*)input; int i; // --- update --- // digest any full blocks, process directly from input for ( i = 0; i < blocks; i++ ) TF512_2way( ctx->chaining, &in[ i * SIZE256 ] ); ctx->buf_ptr = blocks * SIZE256; // copy any remaining data to buffer, it may already contain data // from a previous update for a midstate precalc for ( i = 0; i < len % SIZE256; i++ ) ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ]; i += rem; // use i as rem_ptr in final //--- final --- blocks++; // adjust for final block if ( i == SIZE256 - 1 ) { // only 1 vector left in buffer, all padding at once ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 ); } else { // add first padding ctx->buffer[i] = m256_const2_64( 0, 0x80 ); // add zero padding for ( i += 1; i < SIZE256 - 1; i++ ) ctx->buffer[i] = m256_zero; // add length padding, second last byte is zero unless blocks > 255 ctx->buffer[i] = m256_const2_64( blocks << 56, 0 ); } // digest final padding block and do output transform TF512_2way( ctx->chaining, ctx->buffer ); OF512_2way( ctx->chaining ); // store hash result in output for ( i = 0; i < hashlen_m128i; i++ ) casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ]; return 0; } #endif // VAES