/** * x21s algo implementation * * Implementation by tpruvot@github Jan 2018 * Optimized by JayDDee@github Jan 2018 */ #include "x16r-gate.h" #include #include #include #include "algo/haval/haval-hash-4way.h" #include "algo/tiger/sph_tiger.h" #include "algo/gost/sph_gost.h" #include "algo/lyra2/lyra2.h" #if defined(__SHA__) #include "algo/sha/sph_sha2.h" #endif #if defined (X21S_8WAY) static __thread uint64_t* x21s_8way_matrix; union _x21s_8way_context_overlay { haval256_5_8way_context haval; sph_tiger_context tiger; sph_gost512_context gost; sha256_8way_context sha256; } __attribute__ ((aligned (64))); typedef union _x21s_8way_context_overlay x21s_8way_context_overlay; int x21s_8way_hash( void* output, const void* input, int thrid ) { uint32_t vhash[16*8] __attribute__ ((aligned (128))); uint8_t shash[64*8] __attribute__ ((aligned (64))); uint32_t *hash0 = (uint32_t*) shash; uint32_t *hash1 = (uint32_t*)( shash+64 ); uint32_t *hash2 = (uint32_t*)( shash+128 ); uint32_t *hash3 = (uint32_t*)( shash+192 ); uint32_t *hash4 = (uint32_t*)( shash+256 ); uint32_t *hash5 = (uint32_t*)( shash+320 ); uint32_t *hash6 = (uint32_t*)( shash+384 ); uint32_t *hash7 = (uint32_t*)( shash+448 ); x21s_8way_context_overlay ctx; if ( !x16r_8way_hash_generic( shash, input, thrid ) ) return 0; intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7 ); haval256_5_8way_init( &ctx.haval ); haval256_5_8way_update( &ctx.haval, vhash, 64 ); haval256_5_8way_close( &ctx.haval, vhash ); dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash0, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash0 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash1, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash1 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash2, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash2 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash3, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash3 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash4, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash4 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash5, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash5 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash6, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash6 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash7, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash7 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2REV2_2WAY( x21s_8way_matrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2REV2_2WAY( x21s_8way_matrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2REV2_2WAY( x21s_8way_matrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2REV2_2WAY( x21s_8way_matrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash0, 64 ); sph_gost512_close( &ctx.gost, (void*) hash0 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash1, 64 ); sph_gost512_close( &ctx.gost, (void*) hash1 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash2, 64 ); sph_gost512_close( &ctx.gost, (void*) hash2 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash3, 64 ); sph_gost512_close( &ctx.gost, (void*) hash3 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash4, 64 ); sph_gost512_close( &ctx.gost, (void*) hash4 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash5, 64 ); sph_gost512_close( &ctx.gost, (void*) hash5 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash6, 64 ); sph_gost512_close( &ctx.gost, (void*) hash6 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash7, 64 ); sph_gost512_close( &ctx.gost, (void*) hash7 ); intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7 ); sha256_8way_init( &ctx.sha256 ); sha256_8way_update( &ctx.sha256, vhash, 64 ); sha256_8way_close( &ctx.sha256, output ); return 1; } int scanhash_x21s_8way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr) { uint32_t hash[16*8] __attribute__ ((aligned (128))); uint32_t vdata[20*8] __attribute__ ((aligned (64))); uint32_t *hash7 = &hash[7<<3]; uint32_t lane_hash[8] __attribute__ ((aligned (64))); uint32_t bedata1[2] __attribute__((aligned(64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t Htarg = ptarget[7]; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t last_nonce = max_nonce - 16; const int thr_id = mythr->id; __m512i *noncev = (__m512i*)vdata + 9; // aligned volatile uint8_t *restart = &(work_restart[thr_id].restart); const bool bench = opt_benchmark; if ( bench ) ptarget[7] = 0x0cff; bedata1[0] = bswap_32( pdata[1] ); bedata1[1] = bswap_32( pdata[2] ); static __thread uint32_t s_ntime = UINT32_MAX; uint32_t ntime = bswap_32( pdata[17] ); if ( s_ntime != ntime ) { x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order ); s_ntime = ntime; if ( opt_debug && !thr_id ) applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime ); } x16r_8way_prehash( vdata, pdata ); *noncev = mm512_intrlv_blend_32( _mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0, n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev ); do { if ( x21s_8way_hash( hash, vdata, thr_id ) ) for ( int lane = 0; lane < 8; lane++ ) if ( unlikely( hash7[lane] <= Htarg ) ) { extr_lane_8x32( lane_hash, hash, lane, 256 ); if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = bswap_32( n + lane ); submit_solution( work, lane_hash, mythr ); } } *noncev = _mm512_add_epi32( *noncev, m512_const1_64( 0x0000000800000000 ) ); n += 8; } while ( likely( ( n < last_nonce ) && !(*restart) ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } bool x21s_8way_thread_init() { const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; const int size = (int64_t)ROW_LEN_BYTES * 4; // nRows; x21s_8way_matrix = _mm_malloc( 2 * size, 64 ); return x21s_8way_matrix; } #elif defined (X21S_4WAY) static __thread uint64_t* x21s_4way_matrix; union _x21s_4way_context_overlay { haval256_5_4way_context haval; sph_tiger_context tiger; sph_gost512_context gost; #if defined(__SHA__) sph_sha256_context sha256; #else sha256_4way_context sha256; #endif } __attribute__ ((aligned (64))); typedef union _x21s_4way_context_overlay x21s_4way_context_overlay; int x21s_4way_hash( void* output, const void* input, int thrid ) { uint32_t vhash[16*4] __attribute__ ((aligned (64))); uint8_t shash[64*4] __attribute__ ((aligned (64))); x21s_4way_context_overlay ctx; uint32_t *hash0 = (uint32_t*) shash; uint32_t *hash1 = (uint32_t*)( shash+64 ); uint32_t *hash2 = (uint32_t*)( shash+128 ); uint32_t *hash3 = (uint32_t*)( shash+192 ); if ( !x16r_4way_hash_generic( shash, input, thrid ) ) return 0; intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 ); haval256_5_4way_init( &ctx.haval ); haval256_5_4way_update( &ctx.haval, vhash, 64 ); haval256_5_4way_close( &ctx.haval, vhash ); dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash0, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash0 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash1, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash1 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash2, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash2 ); sph_tiger_init( &ctx.tiger ); sph_tiger ( &ctx.tiger, (const void*) hash3, 64 ); sph_tiger_close( &ctx.tiger, (void*) hash3 ); LYRA2REV2( x21s_4way_matrix, (void*) hash0, 32, (const void*) hash0, 32, (const void*) hash0, 32, 1, 4, 4 ); LYRA2REV2( x21s_4way_matrix, (void*) hash1, 32, (const void*) hash1, 32, (const void*) hash1, 32, 1, 4, 4 ); LYRA2REV2( x21s_4way_matrix, (void*) hash2, 32, (const void*) hash2, 32, (const void*) hash2, 32, 1, 4, 4 ); LYRA2REV2( x21s_4way_matrix, (void*) hash3, 32, (const void*) hash3, 32, (const void*) hash3, 32, 1, 4, 4 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash0, 64 ); sph_gost512_close( &ctx.gost, (void*) hash0 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash1, 64 ); sph_gost512_close( &ctx.gost, (void*) hash1 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash2, 64 ); sph_gost512_close( &ctx.gost, (void*) hash2 ); sph_gost512_init( &ctx.gost ); sph_gost512 ( &ctx.gost, (const void*) hash3, 64 ); sph_gost512_close( &ctx.gost, (void*) hash3 ); #if defined(__SHA__) sph_sha256_init( &ctx.sha256 ); sph_sha256( &ctx.sha256, hash0, 64 ); sph_sha256_close( &ctx.sha256, output ); sph_sha256_init( &ctx.sha256 ); sph_sha256( &ctx.sha256, hash1, 64 ); sph_sha256_close( &ctx.sha256, output+32 ); sph_sha256_init( &ctx.sha256 ); sph_sha256( &ctx.sha256, hash2, 64 ); sph_sha256_close( &ctx.sha256, output+64 ); sph_sha256_init( &ctx.sha256 ); sph_sha256( &ctx.sha256, hash3, 64 ); sph_sha256_close( &ctx.sha256, output+96 ); #else intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 ); sha256_4way_init( &ctx.sha256 ); sha256_4way_update( &ctx.sha256, vhash, 64 ); sha256_4way_close( &ctx.sha256, vhash ); dintrlv_4x32( output, output+32, output+64,output+96, vhash, 256 ); #endif return 1; } int scanhash_x21s_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr) { uint32_t hash[16*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t bedata1[2] __attribute__((aligned(64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; __m256i *noncev = (__m256i*)vdata + 9; // aligned volatile uint8_t *restart = &(work_restart[thr_id].restart); if ( bench ) ptarget[7] = 0x0cff; bedata1[0] = bswap_32( pdata[1] ); bedata1[1] = bswap_32( pdata[2] ); static __thread uint32_t s_ntime = UINT32_MAX; uint32_t ntime = bswap_32( pdata[17] ); if ( s_ntime != ntime ) { x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order ); s_ntime = ntime; if ( opt_debug && !thr_id ) applog( LOG_DEBUG, "hash order %s (%08x)", x16r_hash_order, ntime ); } x16r_4way_prehash( vdata, pdata ); *noncev = mm256_intrlv_blend_32( _mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev ); do { if ( x21s_4way_hash( hash, vdata, thr_id ) ) for ( int i = 0; i < 4; i++ ) if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) ) { pdata[19] = bswap_32( n+i ); submit_solution( work, hash+(i<<3), mythr ); } *noncev = _mm256_add_epi32( *noncev, m256_const1_64( 0x0000000400000000 ) ); n += 4; } while ( likely( ( n < last_nonce ) && !(*restart) ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } bool x21s_4way_thread_init() { const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; const int size = (int64_t)ROW_LEN_BYTES * 4; // nRows; x21s_4way_matrix = _mm_malloc( size, 64 ); return x21s_4way_matrix; } #endif