#include "sha256d-4way.h" #include #include #include #include #include "sha-hash-4way.h" #if defined(SHA256D_16WAY) int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { __m512i vdata[32] __attribute__ ((aligned (128))); __m512i block[16] __attribute__ ((aligned (64))); __m512i hash32[8] __attribute__ ((aligned (64))); __m512i initstate[8] __attribute__ ((aligned (64))); __m512i midstate1[8] __attribute__ ((aligned (64))); __m512i midstate2[8] __attribute__ ((aligned (64))); __m512i mexp_pre[16] __attribute__ ((aligned (64))); uint32_t lane_hash[8] __attribute__ ((aligned (64))); uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] ); uint32_t *pdata = work->data; const uint32_t *ptarget = work->target; const uint32_t targ32_d7 = ptarget[7]; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 16; uint32_t n = first_nonce; __m512i *noncev = vdata + 19; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m512i last_byte = m512_const1_32( 0x80000000 ); const __m512i sixteen = m512_const1_32( 16 ); for ( int i = 0; i < 19; i++ ) vdata[i] = m512_const1_32( pdata[i] ); *noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+9, n+8, n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n ); vdata[16+4] = last_byte; memset_zero_512( vdata+16 + 5, 10 ); vdata[16+15] = m512_const1_32( 80*8 ); // bit count block[ 8] = last_byte; memset_zero_512( block + 9, 6 ); block[15] = m512_const1_32( 32*8 ); // bit count // initialize state initstate[0] = m512_const1_64( 0x6A09E6676A09E667 ); initstate[1] = m512_const1_64( 0xBB67AE85BB67AE85 ); initstate[2] = m512_const1_64( 0x3C6EF3723C6EF372 ); initstate[3] = m512_const1_64( 0xA54FF53AA54FF53A ); initstate[4] = m512_const1_64( 0x510E527F510E527F ); initstate[5] = m512_const1_64( 0x9B05688C9B05688C ); initstate[6] = m512_const1_64( 0x1F83D9AB1F83D9AB ); initstate[7] = m512_const1_64( 0x5BE0CD195BE0CD19 ); sha256_16way_transform_le( midstate1, vdata, initstate ); // Do 3 rounds on the first 12 bytes of the next block sha256_16way_prehash_3rounds( midstate2, mexp_pre, vdata+16, midstate1 ); do { // 1. final 16 bytes of data, with padding sha256_16way_final_rounds( block, vdata+16, midstate1, midstate2, mexp_pre ); // 2. 32 byte hash from 1. if ( sha256_16way_transform_le_short( hash32, block, initstate ) ) { // byte swap final hash for testing mm512_block_bswap_32( hash32, hash32 ); for ( int lane = 0; lane < 16; lane++ ) if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) ) { extr_lane_16x32( lane_hash, hash32, lane, 256 ); if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } } *noncev = _mm512_add_epi32( *noncev, sixteen ); n += 16; } while ( (n < last_nonce) && !work_restart[thr_id].restart ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif #if defined(SHA256D_8WAY) int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { __m256i vdata[32] __attribute__ ((aligned (64))); __m256i block[16] __attribute__ ((aligned (32))); __m256i hash32[8] __attribute__ ((aligned (32))); __m256i initstate[8] __attribute__ ((aligned (32))); __m256i midstate1[8] __attribute__ ((aligned (32))); __m256i midstate2[8] __attribute__ ((aligned (32))); __m256i mexp_pre[16] __attribute__ ((aligned (32))); uint32_t lane_hash[8] __attribute__ ((aligned (32))); uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] ); uint32_t *pdata = work->data; const uint32_t *ptarget = work->target; const uint32_t targ32_d7 = ptarget[7]; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 8; uint32_t n = first_nonce; __m256i *noncev = vdata + 19; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m256i last_byte = m256_const1_32( 0x80000000 ); const __m256i eight = m256_const1_32( 8 ); for ( int i = 0; i < 19; i++ ) vdata[i] = m256_const1_32( pdata[i] ); *noncev = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n ); vdata[16+4] = last_byte; memset_zero_256( vdata+16 + 5, 10 ); vdata[16+15] = m256_const1_32( 80*8 ); // bit count block[ 8] = last_byte; memset_zero_256( block + 9, 6 ); block[15] = m256_const1_32( 32*8 ); // bit count // initialize state initstate[0] = m256_const1_64( 0x6A09E6676A09E667 ); initstate[1] = m256_const1_64( 0xBB67AE85BB67AE85 ); initstate[2] = m256_const1_64( 0x3C6EF3723C6EF372 ); initstate[3] = m256_const1_64( 0xA54FF53AA54FF53A ); initstate[4] = m256_const1_64( 0x510E527F510E527F ); initstate[5] = m256_const1_64( 0x9B05688C9B05688C ); initstate[6] = m256_const1_64( 0x1F83D9AB1F83D9AB ); initstate[7] = m256_const1_64( 0x5BE0CD195BE0CD19 ); sha256_8way_transform_le( midstate1, vdata, initstate ); // Do 3 rounds on the first 12 bytes of the next block sha256_8way_prehash_3rounds( midstate2, mexp_pre, vdata + 16, midstate1 ); do { // 1. final 16 bytes of data, with padding sha256_8way_final_rounds( block, vdata+16, midstate1, midstate2, mexp_pre ); // 2. 32 byte hash from 1. if ( unlikely( sha256_8way_transform_le_short( hash32, block, initstate ) ) ) { // byte swap final hash for testing mm256_block_bswap_32( hash32, hash32 ); for ( int lane = 0; lane < 8; lane++ ) if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) ) { extr_lane_8x32( lane_hash, hash32, lane, 256 ); if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } } *noncev = _mm256_add_epi32( *noncev, eight ); n += 8; } while ( (n < last_nonce) && !work_restart[thr_id].restart ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif #if defined(SHA256D_4WAY) int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { __m128i vdata[32] __attribute__ ((aligned (64))); __m128i block[16] __attribute__ ((aligned (32))); __m128i hash32[8] __attribute__ ((aligned (32))); __m128i initstate[8] __attribute__ ((aligned (32))); __m128i midstate1[8] __attribute__ ((aligned (32))); __m128i midstate2[8] __attribute__ ((aligned (32))); __m128i mexp_pre[16] __attribute__ ((aligned (32))); uint32_t lane_hash[8] __attribute__ ((aligned (32))); uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] ); uint32_t *pdata = work->data; const uint32_t *ptarget = work->target; const uint32_t targ32_d7 = ptarget[7]; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; __m128i *noncev = vdata + 19; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m128i last_byte = m128_const1_32( 0x80000000 ); const __m128i four = m128_const1_32( 4 ); for ( int i = 0; i < 19; i++ ) vdata[i] = m128_const1_32( pdata[i] ); *noncev = _mm_set_epi32( n+ 3, n+ 2, n+1, n ); vdata[16+4] = last_byte; memset_zero_128( vdata+16 + 5, 10 ); vdata[16+15] = m128_const1_32( 80*8 ); // bit count block[ 8] = last_byte; memset_zero_128( block + 9, 6 ); block[15] = m128_const1_32( 32*8 ); // bit count // initialize state initstate[0] = m128_const1_64( 0x6A09E6676A09E667 ); initstate[1] = m128_const1_64( 0xBB67AE85BB67AE85 ); initstate[2] = m128_const1_64( 0x3C6EF3723C6EF372 ); initstate[3] = m128_const1_64( 0xA54FF53AA54FF53A ); initstate[4] = m128_const1_64( 0x510E527F510E527F ); initstate[5] = m128_const1_64( 0x9B05688C9B05688C ); initstate[6] = m128_const1_64( 0x1F83D9AB1F83D9AB ); initstate[7] = m128_const1_64( 0x5BE0CD195BE0CD19 ); // hash first 64 bytes of data sha256_4way_transform_le( midstate1, vdata, initstate ); // Do 3 rounds on the first 12 bytes of the next block sha256_4way_prehash_3rounds( midstate2, mexp_pre, vdata + 16, midstate1 ); do { // 1. final 16 bytes of data, with padding sha256_4way_final_rounds( block, vdata+16, midstate1, midstate2, mexp_pre ); // 2. 32 byte hash from 1. if ( unlikely( sha256_4way_transform_le_short( hash32, block, initstate ) ) ) { // byte swap final hash for testing mm128_block_bswap_32( hash32, hash32 ); for ( int lane = 0; lane < 4; lane++ ) if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) ) { extr_lane_4x32( lane_hash, hash32, lane, 256 ); if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } } *noncev = _mm_add_epi32( *noncev, four ); n += 4; } while ( (n < last_nonce) && !work_restart[thr_id].restart ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif /* bool register_sha256d_algo( algo_gate_t* gate ) { gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT; #if defined(SHA256D_16WAY) gate->scanhash = (void*)&scanhash_sha256d_16way; #elif defined(SHA256D_8WAY) gate->scanhash = (void*)&scanhash_sha256d_8way; #elif defined(SHA256D_4WAY) gate->scanhash = (void*)&scanhash_sha256d_4way; #endif // gate->hash = (void*)&sha256d; return true; }; */