#include "lyra2rev2-gate.h" #include #if defined (__AVX2__) #include "algo/blake/blake-hash-4way.h" #include "algo/keccak/keccak-hash-4way.h" #include "algo/skein/skein-hash-4way.h" #include "algo/bmw/bmw-hash-4way.h" #include "algo/cubehash/sph_cubehash.h" //#include "algo/bmw/sph_bmw.h" #include "algo/cubehash/sse2/cubehash_sse2.h" typedef struct { blake256_4way_context blake; keccak256_4way_context keccak; cubehashParam cube; skein256_4way_context skein; bmw256_4way_context bmw; // sph_bmw256_context bmw; } lyra2v2_4way_ctx_holder; static lyra2v2_4way_ctx_holder l2v2_4way_ctx; void init_lyra2rev2_4way_ctx() { // blake256_4way_init( &l2v2_4way_ctx.blake ); keccak256_4way_init( &l2v2_4way_ctx.keccak ); cubehashInit( &l2v2_4way_ctx.cube, 256, 16, 32 ); skein256_4way_init( &l2v2_4way_ctx.skein ); bmw256_4way_init( &l2v2_4way_ctx.bmw ); // sph_bmw256_init( &l2v2_4way_ctx.bmw ); } void lyra2rev2_4way_hash( void *state, const void *input ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t vhash[8*4] __attribute__ ((aligned (64))); uint64_t vhash64[4*4] __attribute__ ((aligned (64))); lyra2v2_4way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) ); blake256_4way( &ctx.blake, input + (64<<2), 16 ); // blake256_4way( &ctx.blake, input, 80 ); blake256_4way_close( &ctx.blake, vhash ); mm256_reinterleave_4x64( vhash64, vhash, 256 ); keccak256_4way( &ctx.keccak, vhash64, 32 ); keccak256_4way_close( &ctx.keccak, vhash64 ); mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); mm256_interleave_4x64( vhash64, hash0, hash1, hash2, hash3, 256 ); skein256_4way( &ctx.skein, vhash64, 32 ); skein256_4way_close( &ctx.skein, vhash64 ); mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); // BMW256 4way has a lane corruption problem, only lanes 0 & 2 produce // good hash. As a result this ugly workaround of running bmw256-4way // twice with data shuffled to get all 4 lanes of good hash. // The hash is then shuffled back into the appropriate lanes for output. // Not as fast but still faster than using sph serially. // shift lane 1 data to lane 2. mm_interleave_4x32( vhash, hash0, hash0, hash1, hash1, 256 ); bmw256_4way( &ctx.bmw, vhash, 32 ); bmw256_4way_close( &ctx.bmw, vhash ); uint32_t trash[8] __attribute__ ((aligned (32))); // extract lane 0 as usual and lane2 containing lane 1 hash mm_deinterleave_4x32( state, trash, state+32, trash, vhash, 256 ); // shift lane2 data to lane 0 and lane 3 data to lane 2 mm_interleave_4x32( vhash, hash2, hash2, hash3, hash3, 256 ); bmw256_4way_init( &ctx.bmw ); bmw256_4way( &ctx.bmw, vhash, 32 ); bmw256_4way_close( &ctx.bmw, vhash ); // extract lane 2 hash from lane 0 and lane 3 hash from lane 2. mm_deinterleave_4x32( state+64, trash, state+96, trash, vhash, 256 ); } int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done ) { uint32_t hash[8*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t _ALIGN(64) edata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t Htarg = ptarget[7]; uint32_t *nonces = work->nonces; bool *found = work->nfound; int num_found = 0; uint32_t *noncep0 = vdata + 76; // 19*4 uint32_t *noncep1 = vdata + 77; uint32_t *noncep2 = vdata + 78; uint32_t *noncep3 = vdata + 79; if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff; swab32_array( edata, pdata, 20 ); mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 ); blake256_4way_init( &l2v2_4way_ctx.blake ); blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 ); do { found[0] = found[1] = found[2] = found[3] = false; be32enc( noncep0, n ); be32enc( noncep1, n+1 ); be32enc( noncep2, n+2 ); be32enc( noncep3, n+3 ); lyra2rev2_4way_hash( hash, vdata ); pdata[19] = n; if ( hash[7] <= Htarg && fulltest( hash, ptarget ) ) { //printf("found0\n"); found[0] = true; num_found++; nonces[0] = pdata[19] = n; work_set_target_ratio( work, hash ); } if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) ) { //printf("found1\n"); found[1] = true; num_found++; nonces[1] = n+1; work_set_target_ratio( work, hash+8 ); } if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) ) { //printf("found2\n"); found[2] = true; num_found++; nonces[2] = n+2; work_set_target_ratio( work, hash+16 ); } if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) ) { //printf("found3\n"); found[3] = true; num_found++; nonces[3] = n+3; work_set_target_ratio( work, hash+24 ); } n += 4; } while ( (num_found == 0) && (n < max_nonce-4) && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; return num_found; } #endif