/* * Copyright 2009 Colin Percival, 2014 savale * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include #include #include #include #include #include "blake2b-yp.h" // Cyclic right rotation. #ifndef ROTR64 #define ROTR64(x, y) (((x) >> (y)) ^ ((x) << (64 - (y)))) #endif // Little-endian byte access. #define B2B_GET64(p) \ (((uint64_t) ((uint8_t *) (p))[0]) ^ \ (((uint64_t) ((uint8_t *) (p))[1]) << 8) ^ \ (((uint64_t) ((uint8_t *) (p))[2]) << 16) ^ \ (((uint64_t) ((uint8_t *) (p))[3]) << 24) ^ \ (((uint64_t) ((uint8_t *) (p))[4]) << 32) ^ \ (((uint64_t) ((uint8_t *) (p))[5]) << 40) ^ \ (((uint64_t) ((uint8_t *) (p))[6]) << 48) ^ \ (((uint64_t) ((uint8_t *) (p))[7]) << 56)) // G Mixing function. #define B2B_G(a, b, c, d, x, y) { \ v[a] = v[a] + v[b] + x; \ v[d] = ROTR64(v[d] ^ v[a], 32); \ v[c] = v[c] + v[d]; \ v[b] = ROTR64(v[b] ^ v[c], 24); \ v[a] = v[a] + v[b] + y; \ v[d] = ROTR64(v[d] ^ v[a], 16); \ v[c] = v[c] + v[d]; \ v[b] = ROTR64(v[b] ^ v[c], 63); } // Initialization Vector. static const uint64_t blake2b_iv[8] = { 0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179 }; // Compression function. "last" flag indicates last block. static void blake2b_compress(blake2b_yp_ctx *ctx, int last) { const uint8_t sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; int i; uint64_t v[16], m[16]; // init work variables for (i = 0; i < 8; i++) { v[i] = ctx->h[i]; v[i + 8] = blake2b_iv[i]; } v[12] ^= ctx->t[0]; // low 64 bits of offset v[13] ^= ctx->t[1]; // high 64 bits // last block flag set ? if (last) { v[14] = ~v[14]; } // get little-endian words for (i = 0; i < 16; i++) { m[i] = B2B_GET64(&ctx->b[8 * i]); } // twelve rounds for (i = 0; i < 12; i++) { B2B_G( 0, 4, 8, 12, m[sigma[i][ 0]], m[sigma[i][ 1]]); B2B_G( 1, 5, 9, 13, m[sigma[i][ 2]], m[sigma[i][ 3]]); B2B_G( 2, 6, 10, 14, m[sigma[i][ 4]], m[sigma[i][ 5]]); B2B_G( 3, 7, 11, 15, m[sigma[i][ 6]], m[sigma[i][ 7]]); B2B_G( 0, 5, 10, 15, m[sigma[i][ 8]], m[sigma[i][ 9]]); B2B_G( 1, 6, 11, 12, m[sigma[i][10]], m[sigma[i][11]]); B2B_G( 2, 7, 8, 13, m[sigma[i][12]], m[sigma[i][13]]); B2B_G( 3, 4, 9, 14, m[sigma[i][14]], m[sigma[i][15]]); } for(i = 0; i < 8; ++i) { ctx->h[i] ^= v[i] ^ v[i + 8]; } } // Initialize the hashing context "ctx" with optional key "key". // 1 <= outlen <= 64 gives the digest size in bytes. // Secret key (also <= 64 bytes) is optional (keylen = 0). int blake2b_yp_init(blake2b_yp_ctx *ctx, size_t outlen, const void *key, size_t keylen) // (keylen=0: no key) { size_t i; // illegal parameters if (outlen == 0 || outlen > 64 || keylen > 64) { return -1; } // state, "param block" for (i = 0; i < 8; i++) { ctx->h[i] = blake2b_iv[i]; } ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen; ctx->t[0] = 0; // input count low word ctx->t[1] = 0; // input count high word ctx->c = 0; // pointer within buffer ctx->outlen = outlen; // zero input block for (i = keylen; i < 128; i++) { ctx->b[i] = 0; } if (keylen > 0) { blake2b_yp_update(ctx, key, keylen); ctx->c = 128; // at the end } return 0; } // Add "inlen" bytes from "in" into the hash. void blake2b_yp_update(blake2b_yp_ctx *ctx, const void *in, size_t inlen) // data bytes { size_t i; for (i = 0; i < inlen; i++) { if (ctx->c == 128) { // buffer full ? ctx->t[0] += ctx->c; // add counters if (ctx->t[0] < ctx->c) // carry overflow ? ctx->t[1]++; // high word blake2b_compress(ctx, 0); // compress (not last) ctx->c = 0; // counter to zero } ctx->b[ctx->c++] = ((const uint8_t *) in)[i]; } } // Generate the message digest (size given in init). // Result placed in "out". void blake2b_yp_final(blake2b_yp_ctx *ctx, void *out) { size_t i; ctx->t[0] += ctx->c; // mark last block offset // carry overflow if (ctx->t[0] < ctx->c) { ctx->t[1]++; // high word } // fill up with zeros while (ctx->c < 128) { ctx->b[ctx->c++] = 0; } blake2b_compress(ctx, 1); // final block flag = 1 // little endian convert and store for (i = 0; i < ctx->outlen; i++) { ((uint8_t *) out)[i] = (ctx->h[i >> 3] >> (8 * (i & 7))) & 0xFF; } } // inlen = number of bytes void blake2b_yp_hash(void *out, const void *in, size_t inlen) { blake2b_yp_ctx ctx; blake2b_yp_init(&ctx, 32, NULL, 0); blake2b_yp_update(&ctx, in, inlen); blake2b_yp_final(&ctx, out); } // // keylen = number of bytes void hmac_blake2b_yp_init(hmac_yp_ctx *hctx, const void *_key, size_t keylen) { const uint8_t *key = _key; uint8_t keyhash[32]; uint8_t pad[64]; uint64_t i; if (keylen > 64) { blake2b_yp_hash(keyhash, key, keylen); key = keyhash; keylen = 32; } blake2b_yp_init(&hctx->inner, 32, NULL, 0); memset(pad, 0x36, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake2b_yp_update(&hctx->inner, pad, 64); blake2b_yp_init(&hctx->outer, 32, NULL, 0); memset(pad, 0x5c, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake2b_yp_update(&hctx->outer, pad, 64); memset(keyhash, 0, 32); } // datalen = number of bits void hmac_blake2b_yp_update(hmac_yp_ctx *hctx, const void *data, size_t datalen) { // update the inner state blake2b_yp_update(&hctx->inner, data, datalen); } void hmac_blake2b_yp_final(hmac_yp_ctx *hctx, uint8_t *digest) { uint8_t ihash[32]; blake2b_yp_final(&hctx->inner, ihash); blake2b_yp_update(&hctx->outer, ihash, 32); blake2b_yp_final(&hctx->outer, digest); memset(ihash, 0, 32); } // // keylen = number of bytes; inlen = number of bytes void hmac_blake2b_yp_hash(void *out, const void *key, size_t keylen, const void *in, size_t inlen) { hmac_yp_ctx hctx; hmac_blake2b_yp_init(&hctx, key, keylen); hmac_blake2b_yp_update(&hctx, in, inlen); hmac_blake2b_yp_final(&hctx, out); } void pbkdf2_blake2b_yp(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) { hmac_yp_ctx PShctx, hctx; size_t i; uint8_t ivec[4]; uint8_t U[32]; uint8_t T[32]; uint64_t j; int k; size_t clen; /* Compute HMAC state after processing P and S. */ hmac_blake2b_yp_init(&PShctx, passwd, passwdlen); hmac_blake2b_yp_update(&PShctx, salt, saltlen); /* Iterate through the blocks. */ for (i = 0; i * 32 < dkLen; i++) { /* Generate INT(i + 1). */ be32enc(ivec, (uint32_t)(i + 1)); /* Compute U_1 = PRF(P, S || INT(i)). */ memcpy(&hctx, &PShctx, sizeof(hmac_yp_ctx)); hmac_blake2b_yp_update(&hctx, ivec, 4); hmac_blake2b_yp_final(&hctx, U); /* T_i = U_1 ... */ memcpy(T, U, 32); for (j = 2; j <= c; j++) { /* Compute U_j. */ hmac_blake2b_yp_init(&hctx, passwd, passwdlen); hmac_blake2b_yp_update(&hctx, U, 32); hmac_blake2b_yp_final(&hctx, U); /* ... xor U_j ... */ for (k = 0; k < 32; k++) { T[k] ^= U[k]; } } /* Copy as many bytes as necessary into buf. */ clen = dkLen - i * 32; if (clen > 32) { clen = 32; } memcpy(&buf[i * 32], T, clen); } /* Clean PShctx, since we never called _Final on it. */ memset(&PShctx, 0, sizeof(hmac_yp_ctx)); }