#if !defined(SIMD_SCALAR_H__) #define SIMD_SCALAR_H__ 1 /////////////////////////////////// // // Integers up to 128 bits. // // These utilities enhance support for integers up to 128 bits. // All standard operations are supported on 128 bit integers except // numeric constant representation and IO. 128 bit integers must be built // and displayed as 2 64 bit halves, just like the old times. // // Some utilities are also provided for smaller integers, most notably // bit rotation. // MMX has no extract instruction for 32 bit elements so this: // Lo is trivial, high is a simple shift. // Input may be uint64_t or __m64, returns uint32_t. #define u64_extr_lo32(a) ( (uint32_t)( (uint64_t)(a) ) ) #define u64_extr_hi32(a) ( (uint32_t)( ((uint64_t)(a)) >> 32) ) #define u64_extr_32( a, n ) ( (uint32_t)( (a) >> ( ( 2-(n)) <<5 ) ) ) #define u64_extr_16( a, n ) ( (uint16_t)( (a) >> ( ( 4-(n)) <<4 ) ) ) #define u64_extr_8( a, n ) ( (uint8_t) ( (a) >> ( ( 8-(n)) <<3 ) ) ) // Rotate bits in various sized integers. #define u64_ror_64( x, c ) \ (uint64_t)( ( (uint64_t)(x) >> (c) ) | ( (uint64_t)(x) << (64-(c)) ) ) #define u64_rol_64( x, c ) \ (uint64_t)( ( (uint64_t)(x) << (c) ) | ( (uint64_t)(x) >> (64-(c)) ) ) #define u32_ror_32( x, c ) \ (uint32_t)( ( (uint32_t)(x) >> (c) ) | ( (uint32_t)(x) << (32-(c)) ) ) #define u32_rol_32( x, c ) \ (uint32_t)( ( (uint32_t)(x) << (c) ) | ( (uint32_t)(x) >> (32-(c)) ) ) #define u16_ror_16( x, c ) \ (uint16_t)( ( (uint16_t)(x) >> (c) ) | ( (uint16_t)(x) << (16-(c)) ) ) #define u16rol_16( x, c ) \ (uint16_t)( ( (uint16_t)(x) << (c) ) | ( (uint16_t)(x) >> (16-(c)) ) ) #define u8_ror_8( x, c ) \ (uint8_t) ( ( (uint8_t) (x) >> (c) ) | ( (uint8_t) (x) << ( 8-(c)) ) ) #define u8_rol_8( x, c ) \ (uint8_t) ( ( (uint8_t) (x) << (c) ) | ( (uint8_t) (x) >> ( 8-(c)) ) ) // Endian byte swap #define bswap_64( a ) __builtin_bswap64( a ) #define bswap_32( a ) __builtin_bswap32( a ) // 64 bit mem functions use integral sizes instead of bytes, data must // be aligned to 64 bits. Mostly for scaled indexing convenience. static inline void memcpy_64( uint64_t *dst, const uint64_t *src, int n ) { for ( int i = 0; i < n; i++ ) dst[i] = src[i]; } static inline void memset_zero_64( uint64_t *src, int n ) { for ( int i = 0; i < n; i++ ) src[i] = 0ull; } static inline void memset_64( uint64_t *dst, const uint64_t a, int n ) { for ( int i = 0; i < n; i++ ) dst[i] = a; } #if defined (GCC_INT128) /////////////////////////////////////// // // 128 bit integers // // No real need or use. //#define u128_neg1 ((uint128_t)(-1)) // Extracting the low bits is a trivial cast. // These specialized functions are optimized while providing a // consistent interface. #define u128_hi64( x ) ( (uint64_t)( (uint128_t)(x) >> 64 ) ) #define u128_lo64( x ) ( (uint64_t)(x) ) // Generic extract, don't use for extracting low bits, cast instead. #define u128_extr_64( a, n ) ( (uint64_t)( (a) >> ( ( 2-(n)) <<6 ) ) ) #define u128_extr_32( a, n ) ( (uint32_t)( (a) >> ( ( 4-(n)) <<5 ) ) ) #define u128_extr_16( a, n ) ( (uint16_t)( (a) >> ( ( 8-(n)) <<4 ) ) ) #define u128_extr_8( a, n ) ( (uint8_t) ( (a) >> ( (16-(n)) <<3 ) ) ) // Not much need for this but it fills a gap. #define u128_ror_128( x, c ) \ ( ( (uint128_t)(x) >> (c) ) | ( (uint128_t)(x) << (128-(c)) ) ) #define u128_rol_128( x, c ) \ ( ( (uint128_t)(x) << (c) ) | ( (uint128_t)(x) >> (128-(c)) ) ) #endif // GCC_INT128 #endif // SIMD_SCALAR_H__