#include "lyra2-gate.h" #include #include "algo/blake/blake-hash-4way.h" #include "algo/bmw/bmw-hash-4way.h" #include "algo/cubehash/cubehash_sse2.h" #if defined (LYRA2REV3_8WAY) typedef struct { blake256_8way_context blake; cubehashParam cube; bmw256_8way_context bmw; } lyra2v3_8way_ctx_holder; static lyra2v3_8way_ctx_holder l2v3_8way_ctx; bool init_lyra2rev3_8way_ctx() { blake256_8way_init( &l2v3_8way_ctx.blake ); cubehashInit( &l2v3_8way_ctx.cube, 256, 16, 32 ); bmw256_8way_init( &l2v3_8way_ctx.bmw ); return true; } void lyra2rev3_8way_hash( void *state, const void *input ) { uint32_t vhash[8*8] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); lyra2v3_8way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v3_8way_ctx, sizeof(l2v3_8way_ctx) ); blake256_8way( &ctx.blake, input, 80 ); blake256_8way_close( &ctx.blake, vhash ); mm256_dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash4, 32, hash4, 32, hash4, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash5, 32, hash5, 32, hash5, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash4, (const byte*) hash4, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash5, (const byte*) hash5, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash6, (const byte*) hash6, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash7, (const byte*) hash7, 32 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash4, 32, hash4, 32, hash4, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash5, 32, hash5, 32, hash5, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 ); mm256_intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); bmw256_8way( &ctx.bmw, vhash, 32 ); bmw256_8way_close( &ctx.bmw, state ); } int scanhash_lyra2rev3_8way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*8] __attribute__ ((aligned (64))); uint32_t vdata[20*8] __attribute__ ((aligned (64))); uint32_t *hash7 = &(hash[7<<3]); uint32_t lane_hash[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t Htarg = ptarget[7]; __m256i *noncev = (__m256i*)vdata + 19; // aligned /* int */ thr_id = mythr->id; // thr_id arg is deprecated if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff; mm256_bswap_intrlv80_8x32( vdata, pdata ); do { *noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ) ); lyra2rev3_8way_hash( hash, vdata ); pdata[19] = n; for ( int lane = 0; lane < 8; lane++ ) if ( hash7[lane] <= Htarg ) { mm256_extract_lane_8x32( lane_hash, hash, lane, 256 ); if ( fulltest( lane_hash, ptarget ) && !opt_benchmark ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr, lane ); } } n += 8; } while ( (n < max_nonce-8) && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; return 0; } #endif #if defined (LYRA2REV3_4WAY) typedef struct { blake256_4way_context blake; cubehashParam cube; bmw256_4way_context bmw; } lyra2v3_4way_ctx_holder; static lyra2v3_4way_ctx_holder l2v3_4way_ctx; bool init_lyra2rev3_4way_ctx() { blake256_4way_init( &l2v3_4way_ctx.blake ); cubehashInit( &l2v3_4way_ctx.cube, 256, 16, 32 ); bmw256_4way_init( &l2v3_4way_ctx.bmw ); return true; } void lyra2rev3_4way_hash( void *state, const void *input ) { uint32_t vhash[8*4] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) ); blake256_4way( &ctx.blake, input, 80 ); blake256_4way_close( &ctx.blake, vhash ); mm128_dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); mm128_intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 ); bmw256_4way( &ctx.bmw, vhash, 32 ); bmw256_4way_close( &ctx.bmw, state ); } int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t *hash7 = &(hash[7<<2]); uint32_t lane_hash[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t Htarg = ptarget[7]; __m128i *noncev = (__m128i*)vdata + 19; // aligned /* int */ thr_id = mythr->id; // thr_id arg is deprecated if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff; mm128_bswap_intrlv80_4x32( vdata, pdata ); do { *noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) ); lyra2rev3_4way_hash( hash, vdata ); pdata[19] = n; for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg ) { mm128_extract_lane_4x32( lane_hash, hash, lane, 256 ); if ( fulltest( lane_hash, ptarget ) && !opt_benchmark ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr, lane ); } } n += 4; } while ( (n < max_nonce-4) && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; return 0; } #endif