#include #include "algo/blake/sph_blake.h" #include "algo/groestl/sph_groestl.h" #include "algo/skein/sph_skein.h" #include "algo/keccak/sph_keccak.h" #include "lyra2.h" #include "algo-gate-api.h" #include "avxdefs.h" #if defined(__AES__) #include "algo/groestl/aes_ni/hash-groestl256.h" #endif //__thread uint64_t* lyra2re_wholeMatrix; typedef struct { sph_blake256_context blake; sph_keccak256_context keccak; sph_skein256_context skein; #if defined(__AES__) hashState_groestl256 groestl; #else sph_groestl256_context groestl; #endif } lyra2re_ctx_holder; lyra2re_ctx_holder lyra2re_ctx; static __thread sph_blake256_context lyra2_blake_mid; void init_lyra2re_ctx() { sph_blake256_init(&lyra2re_ctx.blake); sph_keccak256_init(&lyra2re_ctx.keccak); sph_skein256_init(&lyra2re_ctx.skein); #if defined(__AES__) init_groestl256( &lyra2re_ctx.groestl, 32 ); #else sph_groestl256_init(&lyra2re_ctx.groestl); #endif } void lyra2_blake256_midstate( const void* input ) { memcpy( &lyra2_blake_mid, &lyra2re_ctx.blake, sizeof lyra2_blake_mid ); sph_blake256( &lyra2_blake_mid, input, 64 ); } void lyra2re_hash(void *state, const void *input) { lyra2re_ctx_holder ctx __attribute__ ((aligned (64))) ; memcpy(&ctx, &lyra2re_ctx, sizeof(lyra2re_ctx)); uint8_t _ALIGN(64) hash[32*8]; #define hashA hash #define hashB hash+16 const int midlen = 64; // bytes const int tail = 80 - midlen; // 16 memcpy( &ctx.blake, &lyra2_blake_mid, sizeof lyra2_blake_mid ); sph_blake256( &ctx.blake, input + midlen, tail ); sph_blake256_close(&ctx.blake, hashA); sph_keccak256(&ctx.keccak, hashA, 32); sph_keccak256_close(&ctx.keccak, hashB); LYRA2RE( hashA, 32, hashB, 32, hashB, 32, 1, 8, 8); // LYRA2RE( lyra2re_wholeMatrix, hashA, 32, hashB, 32, hashB, 32, 1, 8, 8); sph_skein256(&ctx.skein, hashA, 32); sph_skein256_close(&ctx.skein, hashB); #if defined(__AES__) update_and_final_groestl256( &ctx.groestl, hashA, hashB, 256 ); #else sph_groestl256( &ctx.groestl, hashB, 32 ); sph_groestl256_close( &ctx.groestl, hashA ); #endif memcpy(state, hashA, 32); } int scanhash_lyra2re( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t _ALIGN(64) endiandata[20]; uint32_t hash[8] __attribute__((aligned(64))); const uint32_t first_nonce = pdata[19]; uint32_t nonce = first_nonce; const uint32_t Htarg = ptarget[7]; /* int */ thr_id = mythr->id; // thr_id arg is deprecated swab32_array( endiandata, pdata, 20 ); lyra2_blake256_midstate( endiandata ); do { be32enc(&endiandata[19], nonce); lyra2re_hash(hash, endiandata); if (hash[7] <= Htarg ) { if ( fulltest(hash, ptarget) ) { pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce; work_set_target_ratio( work, hash ); return 1; } } nonce++; } while (nonce < max_nonce && !work_restart[thr_id].restart); pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce + 1; return 0; } int64_t lyra2re_get_max64 () { return 0xffffLL; } void lyra2re_set_target ( struct work* work, double job_diff ) { work_set_target(work, job_diff / (128.0 * opt_diff_factor) ); } bool register_lyra2re_algo( algo_gate_t* gate ) { init_lyra2re_ctx(); gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT; gate->scanhash = (void*)&scanhash_lyra2re; gate->hash = (void*)&lyra2re_hash; gate->get_max64 = (void*)&lyra2re_get_max64; gate->set_target = (void*)&lyra2re_set_target; return true; };