/* CubeHash 16/32 is recommended for SHA-3 "normal", 16/1 for "formal" */ #define CUBEHASH_ROUNDS 16 #define CUBEHASH_BLOCKBYTES 32 #define OPTIMIZE_SSE2 #if defined(OPTIMIZE_SSE2) #include #endif #ifdef __AVX2__ #include #endif #include "cubehash_sse2.h" #include "algo/sha3/sha3-defs.h" //enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 }; //#if defined(OPTIMIZE_SSE2) static void transform( cubehashParam *sp ) { int r; const int rounds = sp->rounds; #ifdef __AVX2__ __m256i x0, x1, x2, x3, y0, y1; x0 = _mm256_load_si256( 0 + sp->x ); x1 = _mm256_load_si256( 2 + sp->x ); x2 = _mm256_load_si256( 4 + sp->x ); x3 = _mm256_load_si256( 6 + sp->x ); for ( r = 0; r < rounds; ++r ) { x2 = _mm256_add_epi32( x0, x2 ); x3 = _mm256_add_epi32( x1, x3 ); y0 = x1; y1 = x0; x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ), _mm256_srli_epi32( y0, 25 ) ); x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ), _mm256_srli_epi32( y1, 25 ) ); x0 = _mm256_xor_si256( x0, x2 ); x1 = _mm256_xor_si256( x1, x3 ); x2 = _mm256_shuffle_epi32( x2, 0x4e ); x3 = _mm256_shuffle_epi32( x3, 0x4e ); x2 = _mm256_add_epi32( x0, x2 ); x3 = _mm256_add_epi32( x1, x3 ); y0 = _mm256_permute2f128_si256( x0, x0, 1 ); y1 = _mm256_permute2f128_si256( x1, x1, 1 ); x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ), _mm256_srli_epi32( y0, 21 ) ); x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ), _mm256_srli_epi32( y1, 21 ) ); x0 = _mm256_xor_si256( x0, x2 ); x1 = _mm256_xor_si256( x1, x3 ); x2 = _mm256_shuffle_epi32( x2, 0xb1 ); x3 = _mm256_shuffle_epi32( x3, 0xb1 ); } _mm256_store_si256( 0 + sp->x, x0 ); _mm256_store_si256( 2 + sp->x, x1 ); _mm256_store_si256( 4 + sp->x, x2 ); _mm256_store_si256( 6 + sp->x, x3 ); #else __m128i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3; x0 = _mm_load_si128(0 + sp->x); x1 = _mm_load_si128(1 + sp->x); x2 = _mm_load_si128(2 + sp->x); x3 = _mm_load_si128(3 + sp->x); x4 = _mm_load_si128(4 + sp->x); x5 = _mm_load_si128(5 + sp->x); x6 = _mm_load_si128(6 + sp->x); x7 = _mm_load_si128(7 + sp->x); for (r = 0; r < rounds; ++r) { x4 = _mm_add_epi32(x0, x4); x5 = _mm_add_epi32(x1, x5); x6 = _mm_add_epi32(x2, x6); x7 = _mm_add_epi32(x3, x7); y0 = x2; y1 = x3; y2 = x0; y3 = x1; x0 = _mm_xor_si128(_mm_slli_epi32(y0, 7), _mm_srli_epi32(y0, 25)); x1 = _mm_xor_si128(_mm_slli_epi32(y1, 7), _mm_srli_epi32(y1, 25)); x2 = _mm_xor_si128(_mm_slli_epi32(y2, 7), _mm_srli_epi32(y2, 25)); x3 = _mm_xor_si128(_mm_slli_epi32(y3, 7), _mm_srli_epi32(y3, 25)); x0 = _mm_xor_si128(x0, x4); x1 = _mm_xor_si128(x1, x5); x2 = _mm_xor_si128(x2, x6); x3 = _mm_xor_si128(x3, x7); x4 = _mm_shuffle_epi32(x4, 0x4e); x5 = _mm_shuffle_epi32(x5, 0x4e); x6 = _mm_shuffle_epi32(x6, 0x4e); x7 = _mm_shuffle_epi32(x7, 0x4e); x4 = _mm_add_epi32(x0, x4); x5 = _mm_add_epi32(x1, x5); x6 = _mm_add_epi32(x2, x6); x7 = _mm_add_epi32(x3, x7); y0 = x1; y1 = x0; y2 = x3; y3 = x2; x0 = _mm_xor_si128(_mm_slli_epi32(y0, 11), _mm_srli_epi32(y0, 21)); x1 = _mm_xor_si128(_mm_slli_epi32(y1, 11), _mm_srli_epi32(y1, 21)); x2 = _mm_xor_si128(_mm_slli_epi32(y2, 11), _mm_srli_epi32(y2, 21)); x3 = _mm_xor_si128(_mm_slli_epi32(y3, 11), _mm_srli_epi32(y3, 21)); x0 = _mm_xor_si128(x0, x4); x1 = _mm_xor_si128(x1, x5); x2 = _mm_xor_si128(x2, x6); x3 = _mm_xor_si128(x3, x7); x4 = _mm_shuffle_epi32(x4, 0xb1); x5 = _mm_shuffle_epi32(x5, 0xb1); x6 = _mm_shuffle_epi32(x6, 0xb1); x7 = _mm_shuffle_epi32(x7, 0xb1); } _mm_store_si128(0 + sp->x, x0); _mm_store_si128(1 + sp->x, x1); _mm_store_si128(2 + sp->x, x2); _mm_store_si128(3 + sp->x, x3); _mm_store_si128(4 + sp->x, x4); _mm_store_si128(5 + sp->x, x5); _mm_store_si128(6 + sp->x, x6); _mm_store_si128(7 + sp->x, x7); #endif } // transform int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes) { int i; if ( hashbitlen < 8 ) return BAD_HASHBITLEN; if ( hashbitlen > 512 ) return BAD_HASHBITLEN; if ( hashbitlen != 8 * (hashbitlen / 8) ) return BAD_HASHBITLEN; /* Sanity checks */ if ( rounds <= 0 || rounds > 32 ) rounds = CUBEHASH_ROUNDS; if ( blockbytes <= 0 || blockbytes >= 256) blockbytes = CUBEHASH_BLOCKBYTES; sp->hashbitlen = hashbitlen; sp->rounds = rounds; sp->blockbytes = blockbytes; for ( i = 0; i < 8; ++i ) sp->x[i] = _mm_set_epi32(0, 0, 0, 0); sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8); for ( i = 0; i < 10; ++i ) transform(sp); sp->pos = 0; return SUCCESS; } int cubehashReset(cubehashParam *sp) { return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes); } int cubehashUpdate( cubehashParam *sp, const byte *data, size_t size ) { uint64_t databitlen = 8 * size; /* caller promises us that previous data had integral number of bytes */ /* so sp->pos is a multiple of 8 */ while ( databitlen >= 8 ) { ( (unsigned char *)sp->x )[sp->pos/8] ^= *data; data += 1; databitlen -= 8; sp->pos += 8; if ( sp->pos == 8 * sp->blockbytes ) { transform( sp ); sp->pos = 0; } } if ( databitlen > 0 ) { ( (unsigned char *)sp->x )[sp->pos/8] ^= *data; sp->pos += databitlen; } return SUCCESS; } int cubehashDigest( cubehashParam *sp, byte *digest ) { int i; ( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) ); transform(sp); sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0)); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); for ( i = 0; i < sp->hashbitlen / 8; ++i ) digest[i] = ((unsigned char *) sp->x)[i]; return SUCCESS; } int cubehashUpdateDigest( cubehashParam *sp, byte *digest, const byte *data, size_t size ) { uint64_t databitlen = 8 * size; int hashlen128 = sp->hashbitlen/128; int i; /* caller promises us that previous data had integral number of bytes */ /* so sp->pos is a multiple of 8 */ while ( databitlen >= 8 ) { ( (unsigned char *)sp->x )[sp->pos/8] ^= *data; data += 1; databitlen -= 8; sp->pos += 8; if ( sp->pos == 8 * sp->blockbytes ) { transform(sp); sp->pos = 0; } } if ( databitlen > 0 ) { ( (unsigned char *)sp->x )[sp->pos/8] ^= *data; sp->pos += databitlen; } ( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) ); transform( sp ); sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32(1,0,0,0) ); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); transform(sp); for ( i = 0; i < hashlen128; i++ ) ( (__m128i*)digest )[i] = ( (__m128i*)sp->x )[i]; return SUCCESS; }