#include "cpuminer-config.h" #include "miner.h" #include "algo-gate-api.h" #include #include #include "algo/blake/sph_blake.h" #include "algo/bmw/sph_bmw.h" #include "algo/groestl/sph_groestl.h" #include "algo/jh/sph_jh.h" #include "algo/keccak/sph_keccak.h" #include "algo/skein/sph_skein.h" #include "algo/luffa/sph_luffa.h" #include "algo/cubehash/sph_cubehash.h" #include "algo/shavite/sph_shavite.h" #include "algo/simd/sph_simd.h" #include "algo/echo/sph_echo.h" #ifndef NO_AES_NI #include "algo/groestl/aes_ni/hash-groestl.h" #include "algo/echo/aes_ni/hash_api.h" #endif #include "algo/luffa/sse2/luffa_for_sse2.h" #include "algo/cubehash/sse2/cubehash_sse2.h" #include "algo/simd/sse2/nist.h" #include "algo/blake/sse2/blake.c" #include "algo/keccak/sse2/keccak.c" #include "algo/bmw/sse2/bmw.c" #include "algo/skein/sse2/skein.c" #include "algo/jh/sse2/jh_sse2_opt64.h" typedef struct { hashState_luffa luffa; cubehashParam cube; hashState_sd simd; sph_shavite512_context shavite; #ifdef NO_AES_NI sph_groestl512_context groestl; sph_echo512_context echo; #else hashState_echo echo; hashState_groestl groestl; #endif } x11_ctx_holder; x11_ctx_holder x11_ctx; void init_x11_ctx() { init_luffa( &x11_ctx.luffa, 512 ); cubehashInit( &x11_ctx.cube, 512, 16, 32 ); sph_shavite512_init( &x11_ctx.shavite ); init_sd( &x11_ctx.simd, 512 ); #ifdef NO_AES_NI sph_groestl512_init( &x11_ctx.groestl ); sph_echo512_init( &x11_ctx.echo ); #else init_echo( &x11_ctx.echo, 512 ); init_groestl( &x11_ctx.groestl ); #endif } static void x11_hash( void *state, const void *input ) { unsigned char hash[128] __attribute__ ((aligned (16))); unsigned char hashbuf[128] __attribute__ ((aligned (16))); sph_u64 hashctA; sph_u64 hashctB; x11_ctx_holder ctx; memcpy( &ctx, &x11_ctx, sizeof(x11_ctx) ); size_t hashptr; DECL_BLK; BLK_I; BLK_W; BLK_C; DECL_BMW; BMW_I; BMW_U; #define M(x) sph_dec64le_aligned(data + 8 * (x)) #define H(x) (h[x]) #define dH(x) (dh[x]) BMW_C; #undef M #undef H #undef dH #ifdef NO_AES_NI sph_groestl512 (&ctx.groestl, hash, 64); sph_groestl512_close(&ctx.groestl, hash); #else update_groestl( &ctx.groestl, (char*)hash, 512 ); final_groestl( &ctx.groestl, (char*)hash ); #endif DECL_SKN; SKN_I; SKN_U; SKN_C; DECL_JH; JH_H; DECL_KEC; KEC_I; KEC_U; KEC_C; // asm volatile ("emms"); update_luffa( &ctx.luffa, (const BitSequence*)hash, 64 ); final_luffa( &ctx.luffa, (BitSequence*)hash+64 ); cubehashUpdate( &ctx.cube, (const byte*) hash+64, 64 ); cubehashDigest( &ctx.cube, (byte*)hash ); sph_shavite512( &ctx.shavite, hash, 64 ); sph_shavite512_close( &ctx.shavite, hash+64 ); update_sd( &ctx.simd, (const BitSequence *)hash+64, 512 ); final_sd( &ctx.simd, (BitSequence *)hash ); #ifdef NO_AES_NI sph_echo512 (&ctx.echo, hash, 64 ); sph_echo512_close(&ctx.echo, hash+64 ); #else update_echo ( &ctx.echo, (const BitSequence *) hash, 512 ); final_echo( &ctx.echo, (BitSequence *) hash+64 ); #endif // asm volatile ("emms"); memcpy( state, hash+64, 32 ); } static void x11hash_alt( void *output, const void *input ) { sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_skein512_context ctx_skein; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_luffa512_context ctx_luffa1; sph_cubehash512_context ctx_cubehash1; sph_shavite512_context ctx_shavite1; sph_simd512_context ctx_simd1; sph_echo512_context ctx_echo1; uint32_t _ALIGN(64) hashA[16], hashB[16]; sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, input, 80); sph_blake512_close (&ctx_blake, hashA); sph_bmw512_init(&ctx_bmw); sph_bmw512 (&ctx_bmw, hashA, 64); sph_bmw512_close(&ctx_bmw, hashB); sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, hashB, 64); sph_groestl512_close(&ctx_groestl, hashA); sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, hashA, 64); sph_skein512_close (&ctx_skein, hashB); sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, hashB, 64); sph_jh512_close(&ctx_jh, hashA); sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, hashA, 64); sph_keccak512_close(&ctx_keccak, hashB); sph_luffa512_init (&ctx_luffa1); sph_luffa512 (&ctx_luffa1, hashB, 64); sph_luffa512_close (&ctx_luffa1, hashA); sph_cubehash512_init (&ctx_cubehash1); sph_cubehash512 (&ctx_cubehash1, hashA, 64); sph_cubehash512_close(&ctx_cubehash1, hashB); sph_shavite512_init (&ctx_shavite1); sph_shavite512 (&ctx_shavite1, hashB, 64); sph_shavite512_close(&ctx_shavite1, hashA); sph_simd512_init (&ctx_simd1); sph_simd512 (&ctx_simd1, hashA, 64); sph_simd512_close(&ctx_simd1, hashB); sph_echo512_init (&ctx_echo1); sph_echo512 (&ctx_echo1, hashB, 64); sph_echo512_close(&ctx_echo1, hashA); memcpy(output, hashA, 32); } int scanhash_x11( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done ) { uint32_t endiandata[20] __attribute__((aligned(64))); uint32_t hash64[8] __attribute__((aligned(64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; uint64_t htmax[] = { 0, 0xF, 0xFF, 0xFFF, 0xFFFF, 0x10000000 }; uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00, 0xFFFFF000, 0xFFFF0000, 0 }; // big endian encode 0..18 uint32_t, 64 bits at a time swab32_array( endiandata, pdata, 20 ); for (int m=0; m < 6; m++) if (Htarg <= htmax[m]) { uint32_t mask = masks[m]; do { pdata[19] = ++n; be32enc( &endiandata[19], n ); x11_hash( hash64, &endiandata ); if ( ( hash64[7] & mask ) == 0 ) { if ( fulltest( hash64, ptarget ) ) { *hashes_done = n - first_nonce + 1; return true; } } } while ( n < max_nonce && !work_restart[thr_id].restart ); } *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } bool register_x11_algo( algo_gate_t* gate ) { gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT; init_x11_ctx(); gate->scanhash = (void*)&scanhash_x11; gate->hash = (void*)&x11_hash; gate->get_max64 = (void*)&get_max64_0x3ffff; gate->hash_alt = (void*)&x11hash_alt; return true; };