/* CubeHash 16/32 is recommended for SHA-3 "normal", 16/1 for "formal" */ #define CUBEHASH_ROUNDS 16 #define CUBEHASH_BLOCKBYTES 32 #define OPTIMIZE_SSE2 #if defined(OPTIMIZE_SSE2) #include #endif #ifdef __AVX2__ #include #endif #include "cubehash_sse2.h" #include "algo/sha/sha3-defs.h" static void transform( cubehashParam *sp ) { int r; const int rounds = sp->rounds; #ifdef __AVX2__ __m256i x0, x1, x2, x3, y0, y1; x0 = _mm256_load_si256( (__m256i*)sp->x ); x1 = _mm256_load_si256( (__m256i*)sp->x + 1 ); x2 = _mm256_load_si256( (__m256i*)sp->x + 2 ); x3 = _mm256_load_si256( (__m256i*)sp->x + 3 ); for ( r = 0; r < rounds; ++r ) { x2 = _mm256_add_epi32( x0, x2 ); x3 = _mm256_add_epi32( x1, x3 ); y0 = x1; y1 = x0; x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ), _mm256_srli_epi32( y0, 25 ) ); x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ), _mm256_srli_epi32( y1, 25 ) ); x0 = _mm256_xor_si256( x0, x2 ); x1 = _mm256_xor_si256( x1, x3 ); x2 = _mm256_shuffle_epi32( x2, 0x4e ); x3 = _mm256_shuffle_epi32( x3, 0x4e ); x2 = _mm256_add_epi32( x0, x2 ); x3 = _mm256_add_epi32( x1, x3 ); y0 = _mm256_permute2f128_si256( x0, x0, 1 ); y1 = _mm256_permute2f128_si256( x1, x1, 1 ); x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ), _mm256_srli_epi32( y0, 21 ) ); x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ), _mm256_srli_epi32( y1, 21 ) ); x0 = _mm256_xor_si256( x0, x2 ); x1 = _mm256_xor_si256( x1, x3 ); x2 = _mm256_shuffle_epi32( x2, 0xb1 ); x3 = _mm256_shuffle_epi32( x3, 0xb1 ); } _mm256_store_si256( (__m256i*)sp->x, x0 ); _mm256_store_si256( (__m256i*)sp->x + 1, x1 ); _mm256_store_si256( (__m256i*)sp->x + 2, x2 ); _mm256_store_si256( (__m256i*)sp->x + 3, x3 ); #else __m128i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3; x0 = _mm_load_si128( (__m128i*)sp->x ); x1 = _mm_load_si128( (__m128i*)sp->x + 1 ); x2 = _mm_load_si128( (__m128i*)sp->x + 2 ); x3 = _mm_load_si128( (__m128i*)sp->x + 3 ); x4 = _mm_load_si128( (__m128i*)sp->x + 4 ); x5 = _mm_load_si128( (__m128i*)sp->x + 5 ); x6 = _mm_load_si128( (__m128i*)sp->x + 6 ); x7 = _mm_load_si128( (__m128i*)sp->x + 7 ); for (r = 0; r < rounds; ++r) { x4 = _mm_add_epi32(x0, x4); x5 = _mm_add_epi32(x1, x5); x6 = _mm_add_epi32(x2, x6); x7 = _mm_add_epi32(x3, x7); y0 = x2; y1 = x3; y2 = x0; y3 = x1; x0 = _mm_xor_si128(_mm_slli_epi32(y0, 7), _mm_srli_epi32(y0, 25)); x1 = _mm_xor_si128(_mm_slli_epi32(y1, 7), _mm_srli_epi32(y1, 25)); x2 = _mm_xor_si128(_mm_slli_epi32(y2, 7), _mm_srli_epi32(y2, 25)); x3 = _mm_xor_si128(_mm_slli_epi32(y3, 7), _mm_srli_epi32(y3, 25)); x0 = _mm_xor_si128(x0, x4); x1 = _mm_xor_si128(x1, x5); x2 = _mm_xor_si128(x2, x6); x3 = _mm_xor_si128(x3, x7); x4 = _mm_shuffle_epi32(x4, 0x4e); x5 = _mm_shuffle_epi32(x5, 0x4e); x6 = _mm_shuffle_epi32(x6, 0x4e); x7 = _mm_shuffle_epi32(x7, 0x4e); x4 = _mm_add_epi32(x0, x4); x5 = _mm_add_epi32(x1, x5); x6 = _mm_add_epi32(x2, x6); x7 = _mm_add_epi32(x3, x7); y0 = x1; y1 = x0; y2 = x3; y3 = x2; x0 = _mm_xor_si128(_mm_slli_epi32(y0, 11), _mm_srli_epi32(y0, 21)); x1 = _mm_xor_si128(_mm_slli_epi32(y1, 11), _mm_srli_epi32(y1, 21)); x2 = _mm_xor_si128(_mm_slli_epi32(y2, 11), _mm_srli_epi32(y2, 21)); x3 = _mm_xor_si128(_mm_slli_epi32(y3, 11), _mm_srli_epi32(y3, 21)); x0 = _mm_xor_si128(x0, x4); x1 = _mm_xor_si128(x1, x5); x2 = _mm_xor_si128(x2, x6); x3 = _mm_xor_si128(x3, x7); x4 = _mm_shuffle_epi32(x4, 0xb1); x5 = _mm_shuffle_epi32(x5, 0xb1); x6 = _mm_shuffle_epi32(x6, 0xb1); x7 = _mm_shuffle_epi32(x7, 0xb1); } _mm_store_si128( (__m128i*)sp->x, x0 ); _mm_store_si128( (__m128i*)sp->x + 1, x1 ); _mm_store_si128( (__m128i*)sp->x + 2, x2 ); _mm_store_si128( (__m128i*)sp->x + 3, x3 ); _mm_store_si128( (__m128i*)sp->x + 4, x4 ); _mm_store_si128( (__m128i*)sp->x + 5, x5 ); _mm_store_si128( (__m128i*)sp->x + 6, x6 ); _mm_store_si128( (__m128i*)sp->x + 7, x7 ); #endif } // transform int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes) { int i; if ( hashbitlen < 8 ) return BAD_HASHBITLEN; if ( hashbitlen > 512 ) return BAD_HASHBITLEN; if ( hashbitlen != 8 * (hashbitlen / 8) ) return BAD_HASHBITLEN; /* Sanity checks */ if ( rounds <= 0 || rounds > 32 ) rounds = CUBEHASH_ROUNDS; if ( blockbytes <= 0 || blockbytes >= 256) blockbytes = CUBEHASH_BLOCKBYTES; // all sizes of __m128i sp->hashlen = hashbitlen/128; sp->blocksize = blockbytes/16; sp->rounds = rounds; sp->pos = 0; for ( i = 0; i < 8; ++i ) sp->x[i] = _mm_set_epi32(0, 0, 0, 0); sp->x[0] = _mm_set_epi32( 0, rounds, blockbytes, hashbitlen / 8 ); for ( i = 0; i < 10; ++i ) transform(sp); // sp->pos = 0; return SUCCESS; } int cubehashUpdate( cubehashParam *sp, const byte *data, size_t size ) { const int len = size / 16; const __m128i* in = (__m128i*)data; int i; // It is assumed data is aligned to 256 bits and is a multiple of 128 bits. // Current usage sata is either 64 or 80 bytes. for ( i = 0; i < len; i++ ) { sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] ); sp->pos++; if ( sp->pos == sp->blocksize ) { transform( sp ); sp->pos = 0; } } return SUCCESS; } int cubehashDigest( cubehashParam *sp, byte *digest ) { __m128i* hash = (__m128i*)digest; int i; // pos is zero for 64 byte data, 1 for 80 byte data. sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) ); transform( sp ); sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->x[i]; return SUCCESS; } int cubehashUpdateDigest( cubehashParam *sp, byte *digest, const byte *data, size_t size ) { const int len = size / 16; const __m128i* in = (__m128i*)data; __m128i* hash = (__m128i*)digest; int i; // It is assumed data is aligned to 256 bits and is a multiple of 128 bits. // Current usage sata is either 64 or 80 bytes. for ( i = 0; i < len; i++ ) { sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] ); sp->pos++; if ( sp->pos == sp->blocksize ) { transform( sp ); sp->pos = 0; } } // pos is zero for 64 byte data, 1 for 80 byte data. sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) ); transform( sp ); sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); transform( sp ); for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->x[i]; return SUCCESS; }