#include "lyra2-gate.h" #include #include #include "lyra2.h" #include "algo/blake/sph_blake.h" #include "algo/blake/blake-hash-4way.h" #if defined(LYRA2Z_16WAY) __thread uint64_t* lyra2z_16way_matrix; bool lyra2z_16way_thread_init() { return ( lyra2z_16way_matrix = _mm_malloc( 2*LYRA2Z_MATRIX_SIZE, 64 ) ); } static uint32_t lyra2z_16way_midstate_vars[16*16] __attribute__ ((aligned (64))); static __m512i lyra2z_16way_block0_hash[8] __attribute__ ((aligned (64))); static __m512i lyra2z_16way_block_buf[16] __attribute__ ((aligned (64))); int lyra2z_16way_prehash ( struct work *work ) { uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; // Prehash first block blake256_transform_le( phash, pdata, 512, 0 ); lyra2z_16way_block0_hash[0] = _mm512_set1_epi32( phash[0] ); lyra2z_16way_block0_hash[1] = _mm512_set1_epi32( phash[1] ); lyra2z_16way_block0_hash[2] = _mm512_set1_epi32( phash[2] ); lyra2z_16way_block0_hash[3] = _mm512_set1_epi32( phash[3] ); lyra2z_16way_block0_hash[4] = _mm512_set1_epi32( phash[4] ); lyra2z_16way_block0_hash[5] = _mm512_set1_epi32( phash[5] ); lyra2z_16way_block0_hash[6] = _mm512_set1_epi32( phash[6] ); lyra2z_16way_block0_hash[7] = _mm512_set1_epi32( phash[7] ); // Build vectored second block, interleave 12 of last 16 bytes of data // excepting the nonce. lyra2z_16way_block_buf[ 0] = _mm512_set1_epi32( pdata[16] ); lyra2z_16way_block_buf[ 1] = _mm512_set1_epi32( pdata[17] ); lyra2z_16way_block_buf[ 2] = _mm512_set1_epi32( pdata[18] ); // Partialy prehash second block without touching nonces in block_buf[3]. blake256_16way_round0_prehash_le( lyra2z_16way_midstate_vars, lyra2z_16way_block0_hash, lyra2z_16way_block_buf ); return 1; } static void lyra2z_16way_hash( void *state, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t vhash[8*16] __attribute__ ((aligned (128))); uint32_t hash0[8] __attribute__ ((aligned (32))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); uint32_t hash8[8] __attribute__ ((aligned (32))); uint32_t hash9[8] __attribute__ ((aligned (32))); uint32_t hash10[8] __attribute__ ((aligned (32))); uint32_t hash11[8] __attribute__ ((aligned (32))); uint32_t hash12[8] __attribute__ ((aligned (32))); uint32_t hash13[8] __attribute__ ((aligned (32))); uint32_t hash14[8] __attribute__ ((aligned (32))); uint32_t hash15[8] __attribute__ ((aligned (32))); blake256_16way_final_rounds_le( vhash, midstate_vars, midhash, block ); dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, hash8, hash9, hash10, hash11 ,hash12, hash13, hash14, hash15, vhash, 256 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_2x256( vhash, hash8, hash9, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash8, hash9, vhash, 256 ); intrlv_2x256( vhash, hash10, hash11, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash10, hash11, vhash, 256 ); intrlv_2x256( vhash, hash12, hash13, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash12, hash13, vhash, 256 ); intrlv_2x256( vhash, hash14, hash15, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash14, hash15, vhash, 256 ); memcpy( state, hash0, 32 ); memcpy( state+ 32, hash1, 32 ); memcpy( state+ 64, hash2, 32 ); memcpy( state+ 96, hash3, 32 ); memcpy( state+128, hash4, 32 ); memcpy( state+160, hash5, 32 ); memcpy( state+192, hash6, 32 ); memcpy( state+224, hash7, 32 ); memcpy( state+256, hash8, 32 ); memcpy( state+288, hash9, 32 ); memcpy( state+320, hash10, 32 ); memcpy( state+352, hash11, 32 ); memcpy( state+384, hash12, 32 ); memcpy( state+416, hash13, 32 ); memcpy( state+448, hash14, 32 ); memcpy( state+480, hash15, 32 ); } int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*16] __attribute__ ((aligned (128))); uint32_t midstate_vars[16*16] __attribute__ ((aligned (64))); __m512i block0_hash[8] __attribute__ ((aligned (64))); __m512i block_buf[16] __attribute__ ((aligned (64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t last_nonce = max_nonce - 16; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m512i sixteen = m512_const1_32( 16 ); if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff; pthread_rwlock_rdlock( &g_work_lock ); memcpy( midstate_vars, lyra2z_16way_midstate_vars, sizeof midstate_vars ); memcpy( block0_hash, lyra2z_16way_block0_hash, sizeof block0_hash ); memcpy( block_buf, lyra2z_16way_block_buf, sizeof block_buf ); pthread_rwlock_unlock( &g_work_lock ); block_buf[ 3] = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8, n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n ); do { lyra2z_16way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 16; lane++ ) if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, hash+(lane<<3), mythr ); } block_buf[ 3] = _mm512_add_epi32( block_buf[ 3], sixteen ); n += 16; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined(LYRA2Z_8WAY) __thread uint64_t* lyra2z_8way_matrix; bool lyra2z_8way_thread_init() { return ( lyra2z_8way_matrix = _mm_malloc( LYRA2Z_MATRIX_SIZE, 64 ) ); } static uint32_t lyra2z_8way_midstate_vars[16*8] __attribute__ ((aligned (64))); static __m256i lyra2z_8way_block0_hash[8] __attribute__ ((aligned (64))); static __m256i lyra2z_8way_block_buf[16] __attribute__ ((aligned (64))); int lyra2z_8way_prehash ( struct work *work ) { uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; // Prehash first block blake256_transform_le( phash, pdata, 512, 0 ); lyra2z_8way_block0_hash[0] = _mm256_set1_epi32( phash[0] ); lyra2z_8way_block0_hash[1] = _mm256_set1_epi32( phash[1] ); lyra2z_8way_block0_hash[2] = _mm256_set1_epi32( phash[2] ); lyra2z_8way_block0_hash[3] = _mm256_set1_epi32( phash[3] ); lyra2z_8way_block0_hash[4] = _mm256_set1_epi32( phash[4] ); lyra2z_8way_block0_hash[5] = _mm256_set1_epi32( phash[5] ); lyra2z_8way_block0_hash[6] = _mm256_set1_epi32( phash[6] ); lyra2z_8way_block0_hash[7] = _mm256_set1_epi32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. lyra2z_8way_block_buf[ 0] = _mm256_set1_epi32( pdata[16] ); lyra2z_8way_block_buf[ 1] = _mm256_set1_epi32( pdata[17] ); lyra2z_8way_block_buf[ 2] = _mm256_set1_epi32( pdata[18] ); // Partialy prehash second block without touching nonces blake256_8way_round0_prehash_le( lyra2z_8way_midstate_vars, lyra2z_8way_block0_hash, lyra2z_8way_block_buf ); return 1; } static void lyra2z_8way_hash( void *state, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); uint32_t vhash[8*8] __attribute__ ((aligned (64))); blake256_8way_final_rounds_le( vhash, midstate_vars, midhash, block ); dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); LYRA2Z( lyra2z_8way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash2, 32, hash2, 32, hash2, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash3, 32, hash3, 32, hash3, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash4, 32, hash4, 32, hash4, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash5, 32, hash5, 32, hash5, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash6, 32, hash6, 32, hash6, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash7, 32, hash7, 32, hash7, 32, 8, 8, 8 ); memcpy( state, hash0, 32 ); memcpy( state+ 32, hash1, 32 ); memcpy( state+ 64, hash2, 32 ); memcpy( state+ 96, hash3, 32 ); memcpy( state+128, hash4, 32 ); memcpy( state+160, hash5, 32 ); memcpy( state+192, hash6, 32 ); memcpy( state+224, hash7, 32 ); } int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*8] __attribute__ ((aligned (64))); uint32_t midstate_vars[16*8] __attribute__ ((aligned (64))); __m256i block0_hash[8] __attribute__ ((aligned (64))); __m256i block_buf[16] __attribute__ ((aligned (64))); uint32_t *pdata = work->data; uint64_t *ptarget = (uint64_t*)work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 8; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m256i eight = m256_const1_32( 8 ); pthread_rwlock_rdlock( &g_work_lock ); memcpy( midstate_vars, lyra2z_8way_midstate_vars, sizeof midstate_vars ); memcpy( block0_hash, lyra2z_8way_block0_hash, sizeof block0_hash ); memcpy( block_buf, lyra2z_8way_block_buf, sizeof block_buf ); pthread_rwlock_unlock( &g_work_lock ); block_buf[ 3] = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n ); // Partialy prehash second block without touching nonces blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { lyra2z_8way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 8; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } n += 8; block_buf[ 3] = _mm256_add_epi32( block_buf[ 3], eight ); } while ( likely( (n <= last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined(LYRA2Z_4WAY) __thread uint64_t* lyra2z_4way_matrix; bool lyra2z_4way_thread_init() { return ( lyra2z_4way_matrix = _mm_malloc( LYRA2Z_MATRIX_SIZE, 64 ) ); } static __thread blake256_4way_context l2z_4way_blake_mid; void lyra2z_4way_midstate( const void* input ) { blake256_4way_init( &l2z_4way_blake_mid ); blake256_4way_update( &l2z_4way_blake_mid, input, 64 ); } void lyra2z_4way_hash( void *state, const void *input ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (64))); uint32_t hash2[8] __attribute__ ((aligned (64))); uint32_t hash3[8] __attribute__ ((aligned (64))); uint32_t vhash[8*4] __attribute__ ((aligned (64))); blake256_4way_context ctx_blake __attribute__ ((aligned (64))); memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid ); blake256_4way_update( &ctx_blake, input + (64*4), 16 ); blake256_4way_close( &ctx_blake, vhash ); dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 ); LYRA2Z( lyra2z_4way_matrix, state , 32, hash0, 32, hash0, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, state+32, 32, hash1, 32, hash1, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, state+64, 32, hash2, 32, hash2, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, state+96, 32, hash3, 32, hash3, 32, 8, 8, 8 ); } int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; __m128i *noncev = (__m128i*)vdata + 19; // aligned const int thr_id = mythr->id; const bool bench = opt_benchmark; if ( bench ) ptarget[7] = 0x0000ff; mm128_bswap32_intrlv80_4x32( vdata, pdata ); *noncev = _mm_set_epi32( n+3, n+2, n+1, n ); lyra2z_4way_midstate( vdata ); do { lyra2z_4way_hash( hash, vdata ); for ( int lane = 0; lane < 4; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = bswap_32( n + lane ); submit_solution( work, lane_hash, mythr ); } } *noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) ); n += 4; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif