#include #include #include "nist.h" #include "vector.h" //#if defined(__SSE2__) || defined(__ARM_NEON) #if defined(__SSE2__) #define PRINT_SOME 0 /* int SupportedLength(int hashbitlen) { if (hashbitlen <= 0 || hashbitlen > 512) return 0; else return 1; } */ int RequiredAlignment(void) { return 16; } static const union cv V128 = CV(128); static const union cv V255 = CV(255); static const union cv V257 = CV(257); static const union cv8 V0 = CV(0); /* * Reduce modulo 257; result is in [-127; 383] * REDUCE(x) := (x&255) - (x>>8) */ #define REDUCE(x) \ v16_sub(v16_and(x, V255.v16), v16_shift_r (x, 8)) /* * Reduce from [-127; 383] to [-128; 128] * EXTRA_REDUCE_S(x) := x<=128 ? x : x-257 */ #define EXTRA_REDUCE_S(x) \ v16_sub(x, v16_and(V257.v16, v16_cmp(x, V128.v16))) /* * Reduce modulo 257; result is in [-128; 128] */ #define REDUCE_FULL_S(x) \ EXTRA_REDUCE_S(REDUCE(x)) #define DO_REDUCE(i) \ X(i) = REDUCE(X(i)) #define DO_REDUCE_FULL_S(i) \ do { \ X(i) = REDUCE(X(i)); \ X(i) = EXTRA_REDUCE_S(X(i)); \ } while(0) #define MAYBE_VOLATILE MAYBE_INLINE void fft64(void *a) { v16* const A = a; register v16 X0, X1, X2, X3, X4, X5, X6, X7; /* #if V16_SIZE == 8 #define X(i) A[i] #elif V16_SIZE == 4 #define X(i) A[2*i] #endif */ #define X(i) X##i X0 = A[0]; X1 = A[1]; X2 = A[2]; X3 = A[3]; X4 = A[4]; X5 = A[5]; X6 = A[6]; X7 = A[7]; #define DO_REDUCE(i) \ X(i) = REDUCE(X(i)) /* * Begin with 8 parallels DIF FFT_8 * * FFT_8 using w=4 as 8th root of unity * Unrolled decimation in frequency (DIF) radix-2 NTT. * Output data is in revbin_permuted order. */ static const int w[] = {0, 2, 4, 6}; // v16 *Twiddle = (v16*)FFT64_Twiddle; #define BUTTERFLY(i,j,n) \ do { \ MAYBE_VOLATILE v16 v = X(j); \ X(j) = v16_add(X(i), X(j)); \ if (n) \ X(i) = v16_shift_l(v16_sub(X(i), v), w[n]); \ else \ X(i) = v16_sub(X(i), v); \ } while(0) BUTTERFLY(0, 4, 0); BUTTERFLY(1, 5, 1); BUTTERFLY(2, 6, 2); BUTTERFLY(3, 7, 3); DO_REDUCE(2); DO_REDUCE(3); BUTTERFLY(0, 2, 0); BUTTERFLY(4, 6, 0); BUTTERFLY(1, 3, 2); BUTTERFLY(5, 7, 2); DO_REDUCE(1); BUTTERFLY(0, 1, 0); BUTTERFLY(2, 3, 0); BUTTERFLY(4, 5, 0); BUTTERFLY(6, 7, 0); /* We don't need to reduce X(7) */ DO_REDUCE_FULL_S(0); DO_REDUCE_FULL_S(1); DO_REDUCE_FULL_S(2); DO_REDUCE_FULL_S(3); DO_REDUCE_FULL_S(4); DO_REDUCE_FULL_S(5); DO_REDUCE_FULL_S(6); #undef BUTTERFLY /* * Multiply by twiddle factors */ X(6) = v16_mul(X(6), FFT64_Twiddle[0].v16); X(5) = v16_mul(X(5), FFT64_Twiddle[1].v16); X(4) = v16_mul(X(4), FFT64_Twiddle[2].v16); X(3) = v16_mul(X(3), FFT64_Twiddle[3].v16); X(2) = v16_mul(X(2), FFT64_Twiddle[4].v16); X(1) = v16_mul(X(1), FFT64_Twiddle[5].v16); X(0) = v16_mul(X(0), FFT64_Twiddle[6].v16); /* * Transpose the FFT state with a revbin order permutation * on the rows and the column. * This will make the full FFT_64 in order. */ #define INTERLEAVE(i,j) \ do { \ v16 t1= X(i); \ v16 t2= X(j); \ X(i) = v16_interleavel(t1, t2); \ X(j) = v16_interleaveh(t1, t2); \ } while(0) INTERLEAVE(1, 0); INTERLEAVE(3, 2); INTERLEAVE(5, 4); INTERLEAVE(7, 6); INTERLEAVE(2, 0); INTERLEAVE(3, 1); INTERLEAVE(6, 4); INTERLEAVE(7, 5); INTERLEAVE(4, 0); INTERLEAVE(5, 1); INTERLEAVE(6, 2); INTERLEAVE(7, 3); #undef INTERLEAVE /* * Finish with 8 parallels DIT FFT_8 * * FFT_8 using w=4 as 8th root of unity * Unrolled decimation in time (DIT) radix-2 NTT. * Intput data is in revbin_permuted order. */ #define BUTTERFLY(i,j,n) \ do { \ MAYBE_VOLATILE v16 u = X(j); \ if (n) \ X(i) = v16_shift_l(X(i), w[n]); \ X(j) = v16_sub(X(j), X(i)); \ X(i) = v16_add(u, X(i)); \ } while(0) DO_REDUCE(0); DO_REDUCE(1); DO_REDUCE(2); DO_REDUCE(3); DO_REDUCE(4); DO_REDUCE(5); DO_REDUCE(6); DO_REDUCE(7); BUTTERFLY(0, 1, 0); BUTTERFLY(2, 3, 0); BUTTERFLY(4, 5, 0); BUTTERFLY(6, 7, 0); BUTTERFLY(0, 2, 0); BUTTERFLY(4, 6, 0); BUTTERFLY(1, 3, 2); BUTTERFLY(5, 7, 2); DO_REDUCE(3); BUTTERFLY(0, 4, 0); BUTTERFLY(1, 5, 1); BUTTERFLY(2, 6, 2); BUTTERFLY(3, 7, 3); DO_REDUCE_FULL_S(0); DO_REDUCE_FULL_S(1); DO_REDUCE_FULL_S(2); DO_REDUCE_FULL_S(3); DO_REDUCE_FULL_S(4); DO_REDUCE_FULL_S(5); DO_REDUCE_FULL_S(6); DO_REDUCE_FULL_S(7); #undef BUTTERFLY A[0] = X0; A[1] = X1; A[2] = X2; A[3] = X3; A[4] = X4; A[5] = X5; A[6] = X6; A[7] = X7; #undef X } MAYBE_INLINE void fft128(void *a) { int i; // Temp space to help for interleaving in the end v16 B[8]; v16 *A = (v16*) a; // v16 *Twiddle = (v16*)FFT128_Twiddle; /* Size-2 butterflies */ for (i = 0; i<8; i++) { B[i] = v16_add(A[i], A[i+8]); B[i] = REDUCE_FULL_S(B[i]); A[i+8] = v16_sub(A[i], A[i+8]); A[i+8] = REDUCE_FULL_S(A[i+8]); A[i+8] = v16_mul(A[i+8], FFT128_Twiddle[i].v16); A[i+8] = REDUCE_FULL_S(A[i+8]); } fft64(B); fft64(A+8); /* Transpose (i.e. interleave) */ for (i=0; i<8; i++) { A[2*i] = v16_interleavel (B[i], A[i+8]); A[2*i+1] = v16_interleaveh (B[i], A[i+8]); } } #ifdef v16_broadcast /* Compute the FFT using a table * The function works if the value of the message is smaller * than 2^14. */ void fft128_msg_final(short *a, const unsigned char *x) { static const union cv FFT128_Final_Table[] = { {{ 1, -211, 60, -67, 2, 92, -137, 123}}, {{ 2, 118, 45, 111, 97, -46, 49, -106}}, {{ 4, -73, -17, -11, 8, 111, -34, -22}}, {{ -68, -4, 76, -25, 96, -96, -68, -9}}, {{ 16, -35, -68, -44, 32, -70, -136, -88}}, {{ 0, -124, 17, 12, -6, 57, 47, -8}}, {{ 64, 117, -15, 81, 128, -23, -30, -95}}, {{ -68, -53, -52, -70, -10, -117, 77, 21}}, {{ -1, -46, -60, 67, -2, -92, -120, -123}}, {{ -2, -118, -45, -111, -97, 46, -49, 106}}, {{ -4, 73, 17, 11, -8, -111, 34, 22}}, {{ 68, 4, -76, 25, -96, 96, 68, 9}}, {{ -16, -222, 68, 44, -32, 70, -121, 88}}, {{ 0, 124, -17, -12, 6, -57, -47, 8}}, {{ -64, -117, 15, -81, -128, -234, 30, 95}}, {{ 68, 53, 52, 70, 10, 117, -77, -21}}, {{-118, -31, 116, -61, 21, -62, -25, -122}}, {{-101, 107, -45, -95, -8, 3, 101, -34}}, {{ 42, -124, -50, 13, 84, 9, -100, -231}}, {{ -79, -53, 82, 65, -81, 47, 61, 107}}, {{ -89, -239, 57, -205, -178, 36, -143, 104}}, {{-126, 113, 33, 111, 103, -109, 65, -114}}, {{ -99, 72, -29, -49, -198, -113, -58, -98}}, {{ 8, -27, -106, -30, 111, 6, 10, -108}}, {{-139, 31, -116, -196, -21, 62, 25, -135}}, {{ 101, -107, 45, 95, 8, -3, -101, 34}}, {{ -42, -133, 50, -13, -84, -9, 100, -26}}, {{ 79, 53, -82, -65, 81, -47, -61, -107}}, {{-168, -18, -57, -52, -79, -36, -114, -104}}, {{ 126, -113, -33, -111, -103, 109, -65, 114}}, {{ 99, -72, -228, 49, -59, 113, 58, -159}}, {{ -8, 27, 106, 30, -111, -6, -10, 108}} }; // v16 *Table = (v16*)FFT128_Final_Table; v16 *A = (v16*) a; v16 msg1 = v16_broadcast(x[0]>128?x[0]-257:x[0]); v16 msg2 = v16_broadcast(x[1]>128?x[1]-257:x[1]); // v16 msg2 = v16_broadcast(x[1]); #if 0 int i; for (i=0; i<16; i++) { v16 tmp = v16_mul(FFT128_Final_Table[2*i].v16 , msg2); v16 sum = v16_add(FFT128_Final_Table[2*i+1].v16, msg1); sum = v16_add(sum, tmp); A[i] = REDUCE_FULL_S(sum); } #else #define FFT_FINAL(i) \ v16 tmp##i = v16_mul(FFT128_Final_Table[2*i].v16, msg2); \ v16 sum##i = v16_add(FFT128_Final_Table[2*i+1].v16, msg1); \ sum##i = v16_add(sum##i, tmp##i); \ A[i] = REDUCE_FULL_S(sum##i); FFT_FINAL(0) FFT_FINAL(1) FFT_FINAL(2) FFT_FINAL(3) FFT_FINAL(4) FFT_FINAL(5) FFT_FINAL(6) FFT_FINAL(7) FFT_FINAL(8) FFT_FINAL(9) FFT_FINAL(10) FFT_FINAL(11) FFT_FINAL(12) FFT_FINAL(13) FFT_FINAL(14) FFT_FINAL(15) #endif } #endif void fft128_msg(short *a, const unsigned char *x, int final) { static const union cv Tweak = {{0,0,0,0,0,0,0,1}}; static const union cv FinalTweak = {{0,0,0,0,0,1,0,1}}; v8 *X = (v8*) x; v16 *A = (v16*) a; // v16 *Twiddle = (v16*)FFT128_Twiddle; #define UNPACK(i) \ do { \ v8 t = X[i]; \ A[2*i] = v8_mergel(t, V0.v8); \ A[2*i+8] = v16_mul(A[2*i], FFT128_Twiddle[2*i].v16); \ A[2*i+8] = REDUCE(A[2*i+8]); \ A[2*i+1] = v8_mergeh(t, V0.v8); \ A[2*i+9] = v16_mul(A[2*i+1], FFT128_Twiddle[2*i+1].v16); \ A[2*i+9] = REDUCE(A[2*i+9]); \ } while(0) /* * This allows to tweak the last butterflies to introduce X^127 */ #define UNPACK_TWEAK(i,tw) \ do { \ v8 t = X[i]; \ v16 tmp; \ A[2*i] = v8_mergel(t, V0.v8); \ A[2*i+8] = v16_mul(A[2*i], FFT128_Twiddle[2*i].v16); \ A[2*i+8] = REDUCE(A[2*i+8]); \ tmp = v8_mergeh(t, V0.v8); \ A[2*i+1] = v16_add(tmp, tw); \ A[2*i+9] = v16_mul(v16_sub(tmp, tw), FFT128_Twiddle[2*i+1].v16); \ A[2*i+9] = REDUCE(A[2*i+9]); \ } while(0) UNPACK(0); UNPACK(1); UNPACK(2); if (final) UNPACK_TWEAK(3, FinalTweak.v16); else UNPACK_TWEAK(3, Tweak.v16); #undef UNPACK #undef UNPACK_TWEAK fft64(a); fft64(a+64); } #if 0 void fft128_msg(short *a, const unsigned char *x, int final) { for (int i=0; i<64; i++) a[i] = x[i]; for (int i=64; i<128; i++) a[i] = 0; a[127] = 1; a[125] = final? 1: 0; fft128(a); } #endif void fft256_msg(short *a, const unsigned char *x, int final) { static const union cv Tweak = {{0,0,0,0,0,0,0,1}}; static const union cv FinalTweak = {{0,0,0,0,0,1,0,1}}; v8 *X = (v8*) x; v16 *A = (v16*) a; // v16 *Twiddle = (v16*)FFT256_Twiddle; #define UNPACK(i) \ do { \ v8 t = X[i]; \ A[2*i] = v8_mergel(t, V0.v8); \ A[2*i+16] = v16_mul(A[2*i], FFT256_Twiddle[2*i].v16); \ A[2*i+16] = REDUCE(A[2*i+16]); \ A[2*i+1] = v8_mergeh(t, V0.v8); \ A[2*i+17] = v16_mul(A[2*i+1], FFT256_Twiddle[2*i+1].v16); \ A[2*i+17] = REDUCE(A[2*i+17]); \ } while(0) /* * This allows to tweak the last butterflies to introduce X^127 */ #define UNPACK_TWEAK(i,tw) \ do { \ v8 t = X[i]; \ v16 tmp; \ A[2*i] = v8_mergel(t, V0.v8); \ A[2*i+16] = v16_mul(A[2*i], FFT256_Twiddle[2*i].v16); \ A[2*i+16] = REDUCE(A[2*i+16]); \ tmp = v8_mergeh(t, V0.v8); \ A[2*i+1] = v16_add(tmp, tw); \ A[2*i+17] = v16_mul(v16_sub(tmp, tw), FFT256_Twiddle[2*i+1].v16); \ A[2*i+17] = REDUCE(A[2*i+17]); \ } while(0) UNPACK(0); UNPACK(1); UNPACK(2); UNPACK(3); UNPACK(4); UNPACK(5); UNPACK(6); if (final) UNPACK_TWEAK(7, FinalTweak.v16); else UNPACK_TWEAK(7, Tweak.v16); #undef UNPACK #undef UNPACK_TWEAK fft128(a); fft128(a+128); } void rounds(u32* state, const unsigned char* msg, short* fft) { v32* S = (v32*) state; const v32* M = (v32*)msg; volatile v16* W = (v16*)fft; register v32 S0, S1, S2, S3; static const union cv code[] = { CV(185), CV(233) }; S0 = v32_xor(S[0], v32_bswap(M[0])); S1 = v32_xor(S[1], v32_bswap(M[1])); S2 = v32_xor(S[2], v32_bswap(M[2])); S3 = v32_xor(S[3], v32_bswap(M[3])); #define S(i) S##i /* #define F_0(B, C, D) ((((C) ^ (D)) & (B)) ^ (D)) */ /* #define F_1(B, C, D) (((D) & (C)) | (((D) | (C)) & (B))) */ #define F_0(B, C, D) v32_xor(v32_and(v32_xor(C,D), B), D) #define F_1(B, C, D) v32_or(v32_and(D, C), v32_and( v32_or(D,C), B)) #define F(a,b,c,fun) F_##fun (a,b,c) /* * We split the round function in two halfes * so as to insert some independent computations in between */ #define SUM3_00 1 #define SUM3_01 2 #define SUM3_02 3 #define SUM3_10 2 #define SUM3_11 3 #define SUM3_12 1 #define SUM3_20 3 #define SUM3_21 1 #define SUM3_22 2 #define STEP_1(a,b,c,d,w,fun,r,s,z) \ do { \ if (PRINT_SOME) { \ int j; \ v32 ww=w, aa=a, bb=b, cc=c, dd=d; \ u32 *WW = (void*)&ww; \ u32 *AA = (void*)&aa; \ u32 *BB = (void*)&bb; \ u32 *CC = (void*)&cc; \ u32 *DD = (void*)ⅆ \ for (j=0; j<4; j++) { \ printf ("%08x/%2i/%2i[%i]: %08x %08x %08x %08x\n", \ WW[j], r, s, SUM3_##z, \ AA[j], BB[j], CC[j], DD[j]); \ } \ } \ TT = F(a,b,c,fun); \ a = v32_rotate(a,r); \ w = v32_add(w, d); \ TT = v32_add(TT, w); \ TT = v32_rotate(TT,s); \ d = v32_shufxor(a,SUM3_##z); \ } while(0) #define STEP_2(a,b,c,d,w,fun,r,s) \ do { \ d = v32_add(d, TT); \ } while(0) #define STEP(a,b,c,d,w,fun,r,s,z) \ do { \ register v32 TT; \ STEP_1(a,b,c,d,w,fun,r,s,z); \ STEP_2(a,b,c,d,w,fun,r,s); \ } while(0); #define ROUND(h0,l0,u0,h1,l1,u1,h2,l2,u2,h3,l3,u3, \ fun,r,s,t,u,z,r0) \ do { \ register v32 W0, W1, W2, W3, TT; \ W0 = v16_merge##u0(W[h0], W[l0]); \ W0 = V1632(v16_mul(V3216(W0), code[z].v16)); \ STEP_1(S(0), S(1), S(2), S(3), W0, fun, r, s, r0##0); \ W1 = v16_merge##u1(W[h1], W[l1]); \ W1 = V1632(v16_mul(V3216(W1), code[z].v16)); \ STEP_2(S(0), S(1), S(2), S(3), W0, fun, r, s); \ STEP_1(S(3), S(0), S(1), S(2), W1, fun, s, t, r0##1); \ W2 = v16_merge##u2(W[h2], W[l2]); \ W2 = V1632(v16_mul(V3216(W2), code[z].v16)); \ STEP_2(S(3), S(0), S(1), S(2), W1, fun, s, t); \ STEP_1(S(2), S(3), S(0), S(1), W2, fun, t, u, r0##2); \ W3 = v16_merge##u3(W[h3], W[l3]); \ W3 = V1632(v16_mul(V3216(W3), code[z].v16)); \ STEP_2(S(2), S(3), S(0), S(1), W2, fun, t, u); \ STEP_1(S(1), S(2), S(3), S(0), W3, fun, u, r, r0##0); \ STEP_2(S(1), S(2), S(3), S(0), W3, fun, u, r); \ } while(0) /* * 4 rounds with code 185 */ ROUND( 2, 10, l, 3, 11, l, 0, 8, l, 1, 9, l, 0, 3, 23, 17, 27, 0, 0); ROUND( 3, 11, h, 2, 10, h, 1, 9, h, 0, 8, h, 1, 3, 23, 17, 27, 0, 1); ROUND( 7, 15, h, 5, 13, h, 6, 14, l, 4, 12, l, 0, 28, 19, 22, 7, 0, 2); ROUND( 4, 12, h, 6, 14, h, 5, 13, l, 7, 15, l, 1, 28, 19, 22, 7, 0, 0); /* * 4 rounds with code 233 */ ROUND( 0, 4, h, 1, 5, l, 3, 7, h, 2, 6, l, 0, 29, 9, 15, 5, 1, 1); ROUND( 3, 7, l, 2, 6, h, 0, 4, l, 1, 5, h, 1, 29, 9, 15, 5, 1, 2); ROUND( 11, 15, l, 8, 12, l, 8, 12, h, 11, 15, h, 0, 4, 13, 10, 25, 1, 0); ROUND( 9, 13, h, 10, 14, h, 10, 14, l, 9, 13, l, 1, 4, 13, 10, 25, 1, 1); /* * 1 round as feed-forward */ STEP(S(0), S(1), S(2), S(3), S[0], 0, 4, 13, 20); STEP(S(3), S(0), S(1), S(2), S[1], 0, 13, 10, 21); STEP(S(2), S(3), S(0), S(1), S[2], 0, 10, 25, 22); STEP(S(1), S(2), S(3), S(0), S[3], 0, 25, 4, 20); S[0] = S(0); S[1] = S(1); S[2] = S(2); S[3] = S(3); #undef ROUND #undef STEP #undef STEP_1 #undef STEP_2 } void rounds512(u32* state, const unsigned char* msg, short* fft) { v32* S = (v32*) state; v32* M = (v32*) msg; v16* W = (v16*) fft; register v32 S0l, S1l, S2l, S3l; register v32 S0h, S1h, S2h, S3h; static const union cv code[] = { CV(185), CV(233) }; S0l = v32_xor(S[0], v32_bswap(M[0])); S0h = v32_xor(S[1], v32_bswap(M[1])); S1l = v32_xor(S[2], v32_bswap(M[2])); S1h = v32_xor(S[3], v32_bswap(M[3])); S2l = v32_xor(S[4], v32_bswap(M[4])); S2h = v32_xor(S[5], v32_bswap(M[5])); S3l = v32_xor(S[6], v32_bswap(M[6])); S3h = v32_xor(S[7], v32_bswap(M[7])); #define S(i) S##i /* #define F_0(B, C, D) ((((C) ^ (D)) & (B)) ^ (D)) */ /* #define F_1(B, C, D) (((D) & (C)) | (((D) | (C)) & (B))) */ #define F_0(B, C, D) v32_xor(v32_and(v32_xor(C,D), B), D) #define F_1(B, C, D) v32_or(v32_and(D, C), v32_and( v32_or(D,C), B)) #define Fl(a,b,c,fun) F_##fun (a##l,b##l,c##l) #define Fh(a,b,c,fun) F_##fun (a##h,b##h,c##h) /* * We split the round function in two halfes * so as to insert some independent computations in between */ #define SUM7_00 0 #define SUM7_01 1 #define SUM7_02 2 #define SUM7_03 3 #define SUM7_04 4 #define SUM7_05 5 #define SUM7_06 6 #define SUM7_10 1 #define SUM7_11 2 #define SUM7_12 3 #define SUM7_13 4 #define SUM7_14 5 #define SUM7_15 6 #define SUM7_16 0 #define SUM7_20 2 #define SUM7_21 3 #define SUM7_22 4 #define SUM7_23 5 #define SUM7_24 6 #define SUM7_25 0 #define SUM7_26 1 #define SUM7_30 3 #define SUM7_31 4 #define SUM7_32 5 #define SUM7_33 6 #define SUM7_34 0 #define SUM7_35 1 #define SUM7_36 2 #define SUM7_40 4 #define SUM7_41 5 #define SUM7_42 6 #define SUM7_43 0 #define SUM7_44 1 #define SUM7_45 2 #define SUM7_46 3 #define SUM7_50 5 #define SUM7_51 6 #define SUM7_52 0 #define SUM7_53 1 #define SUM7_54 2 #define SUM7_55 3 #define SUM7_56 4 #define SUM7_60 6 #define SUM7_61 0 #define SUM7_62 1 #define SUM7_63 2 #define SUM7_64 3 #define SUM7_65 4 #define SUM7_66 5 #define PERM(z,d,a) XCAT(PERM_,XCAT(SUM7_##z,PERM_START))(d,a) #define PERM_0(d,a) /* XOR 1 */ \ do { \ d##l = v32_shufxor(a##l,1); \ d##h = v32_shufxor(a##h,1); \ } while(0) #define PERM_1(d,a) /* XOR 6 */ \ do { \ d##l = v32_shufxor(a##h,2); \ d##h = v32_shufxor(a##l,2); \ } while(0) #define PERM_2(d,a) /* XOR 2 */ \ do { \ d##l = v32_shufxor(a##l,2); \ d##h = v32_shufxor(a##h,2); \ } while(0) #define PERM_3(d,a) /* XOR 3 */ \ do { \ d##l = v32_shufxor(a##l,3); \ d##h = v32_shufxor(a##h,3); \ } while(0) #define PERM_4(d,a) /* XOR 5 */ \ do { \ d##l = v32_shufxor(a##h,1); \ d##h = v32_shufxor(a##l,1); \ } while(0) #define PERM_5(d,a) /* XOR 7 */ \ do { \ d##l = v32_shufxor(a##h,3); \ d##h = v32_shufxor(a##l,3); \ } while(0) #define PERM_6(d,a) /* XOR 4 */ \ do { \ d##l = a##h; \ d##h = a##l; \ } while(0) #define STEP_1_(a,b,c,d,w,fun,r,s,z) \ do { \ if (PRINT_SOME) { \ int j; \ v32 ww=w##l, aa=a##l, bb=b##l, cc=c##l, dd=d##l; \ u32 *WW = (void*)&ww; \ u32 *AA = (void*)&aa; \ u32 *BB = (void*)&bb; \ u32 *CC = (void*)&cc; \ u32 *DD = (void*)ⅆ \ for (j=0; j<4; j++) { \ printf ("%08x/%2i/%2i: %08x %08x %08x %08x\n", \ WW[j], r, s, \ AA[j], BB[j], CC[j], DD[j]); \ } \ } \ TTl = Fl(a,b,c,fun); \ TTh = Fh(a,b,c,fun); \ a##l = v32_rotate(a##l,r); \ a##h = v32_rotate(a##h,r); \ w##l = v32_add(w##l, d##l); \ w##h = v32_add(w##h, d##h); \ TTl = v32_add(TTl, w##l); \ TTh = v32_add(TTh, w##h); \ TTl = v32_rotate(TTl,s); \ TTh = v32_rotate(TTh,s); \ PERM(z,d,a); \ } while(0) #define STEP_1(a,b,c,d,w,fun,r,s,z) \ STEP_1_(a,b,c,d,w,fun,r,s,z) #define STEP_2_(a,b,c,d,w,fun,r,s) \ do { \ d##l = v32_add(d##l, TTl); \ d##h = v32_add(d##h, TTh); \ } while(0) #define STEP_2(a,b,c,d,w,fun,r,s) \ STEP_2_(a,b,c,d,w,fun,r,s) #define STEP(a,b,c,d,w1,w2,fun,r,s,z) \ do { \ register v32 TTl, TTh, Wl=w1, Wh=w2; \ STEP_1(a,b,c,d,W,fun,r,s,z); \ STEP_2(a,b,c,d,W,fun,r,s); \ } while(0); #define MSG_l(x) (2*(x)) #define MSG_h(x) (2*(x)+1) #define MSG(w,hh,ll,u,z) \ do { \ int a = MSG_##u(hh); \ int b = MSG_##u(ll); \ w##l = v16_mergel(W[a], W[b]); \ w##l = V1632(v16_mul(V3216(w##l), code[z].v16)); \ w##h = v16_mergeh(W[a], W[b]); \ w##h = V1632(v16_mul(V3216(w##h), code[z].v16)); \ } while(0) #define ROUND(h0,l0,u0,h1,l1,u1,h2,l2,u2,h3,l3,u3, \ fun,r,s,t,u,z) \ do { \ register v32 W0l, W1l, W2l, W3l, TTl; \ register v32 W0h, W1h, W2h, W3h, TTh; \ MSG(W0,h0,l0,u0,z); \ STEP_1(S(0), S(1), S(2), S(3), W0, fun, r, s, 0); \ MSG(W1,h1,l1,u1,z); \ STEP_2(S(0), S(1), S(2), S(3), W0, fun, r, s); \ STEP_1(S(3), S(0), S(1), S(2), W1, fun, s, t, 1); \ MSG(W2,h2,l2,u2,z); \ STEP_2(S(3), S(0), S(1), S(2), W1, fun, s, t); \ STEP_1(S(2), S(3), S(0), S(1), W2, fun, t, u, 2); \ MSG(W3,h3,l3,u3,z); \ STEP_2(S(2), S(3), S(0), S(1), W2, fun, t, u); \ STEP_1(S(1), S(2), S(3), S(0), W3, fun, u, r, 3); \ STEP_2(S(1), S(2), S(3), S(0), W3, fun, u, r); \ } while(0) /* * 4 rounds with code 185 */ #define PERM_START 0 ROUND( 2, 10, l, 3, 11, l, 0, 8, l, 1, 9, l, 0, 3, 23, 17, 27, 0); #undef PERM_START #define PERM_START 4 ROUND( 3, 11, h, 2, 10, h, 1, 9, h, 0, 8, h, 1, 3, 23, 17, 27, 0); #undef PERM_START #define PERM_START 1 ROUND( 7, 15, h, 5, 13, h, 6, 14, l, 4, 12, l, 0, 28, 19, 22, 7, 0); #undef PERM_START #define PERM_START 5 ROUND( 4, 12, h, 6, 14, h, 5, 13, l, 7, 15, l, 1, 28, 19, 22, 7, 0); #undef PERM_START /* * 4 rounds with code 233 */ #define PERM_START 2 ROUND( 0, 4, h, 1, 5, l, 3, 7, h, 2, 6, l, 0, 29, 9, 15, 5, 1); #undef PERM_START #define PERM_START 6 ROUND( 3, 7, l, 2, 6, h, 0, 4, l, 1, 5, h, 1, 29, 9, 15, 5, 1); #undef PERM_START #define PERM_START 3 ROUND( 11, 15, l, 8, 12, l, 8, 12, h, 11, 15, h, 0, 4, 13, 10, 25, 1); #undef PERM_START #define PERM_START 0 ROUND( 9, 13, h, 10, 14, h, 10, 14, l, 9, 13, l, 1, 4, 13, 10, 25, 1); #undef PERM_START /* * 1 round as feed-forward */ #define PERM_START 4 STEP(S(0), S(1), S(2), S(3), S[0], S[1], 0, 4, 13, 0); STEP(S(3), S(0), S(1), S(2), S[2], S[3], 0, 13, 10, 1); STEP(S(2), S(3), S(0), S(1), S[4], S[5], 0, 10, 25, 2); STEP(S(1), S(2), S(3), S(0), S[6], S[7], 0, 25, 4, 3); #undef PERM_START S[0] = S0l; S[1] = S0h; S[2] = S1l; S[3] = S1h; S[4] = S2l; S[5] = S2h; S[6] = S3l; S[7] = S3h; #undef ROUND #undef STEP #undef STEP_1 #undef STEP_2 } void SIMD_Compress(hashState_sd * state, const unsigned char *m, int final) { if (state->hashbitlen <= 256) { union cv Y[16]; short* y = (short*) Y[0].u16; #ifdef v16_broadcast if (final == 2) { fft128_msg_final(y, m); rounds(state->A, m, y); } else { fft128_msg(y, m, final); rounds(state->A, m, y); } #else fft128_msg(y, m, final); rounds(state->A, m, y); #endif } else { union cv Y[32]; short* y = (short*) Y[0].u16; fft256_msg(y, m, final); rounds512(state->A, m, y); } } /* * Give the FFT output in the regular order for consitancy checks */ void fft128_natural(fft_t *x, unsigned char *a) { union cv Y[16]; short* y = (short*) Y[0].u16; int i; fft128_msg(y, a, 0); for(i=0; i<64; i++) { x[2*i] = y[i]; x[2*i+1] = y[i+64]; } } #endif // SSE2