#include "qubit-gate.h" #if !defined(QUBIT_8WAY) && !defined(QUBIT_4WAY) #include #include #include #include #include "algo/luffa/luffa_for_sse2.h" #include "algo/cubehash/cubehash_sse2.h" #include "algo/simd/simd-hash-2way.h" #include "algo/shavite/sph_shavite.h" #if defined(__AES__) || defined(__ARM_FEATURE_AES) #include "algo/echo/aes_ni/hash_api.h" #else #include "algo/echo/sph_echo.h" #endif typedef struct { hashState_luffa luffa; cubehashParam cubehash; sph_shavite512_context shavite; simd512_context simd; #if defined(__AES__) || defined(__ARM_FEATURE_AES) hashState_echo echo; #else sph_echo512_context echo; #endif } qubit_ctx_holder; qubit_ctx_holder qubit_ctx; static __thread hashState_luffa qubit_luffa_mid; void init_qubit_ctx() { init_luffa(&qubit_ctx.luffa,512); cubehashInit(&qubit_ctx.cubehash,512,16,32); sph_shavite512_init(&qubit_ctx.shavite); #if defined(__AES__) || defined(__ARM_FEATURE_AES) init_echo(&qubit_ctx.echo, 512); #else sph_echo512_init(&qubit_ctx.echo); #endif }; void qubit_luffa_midstate( const void* input ) { memcpy( &qubit_luffa_mid, &qubit_ctx.luffa, sizeof qubit_luffa_mid ); update_luffa( &qubit_luffa_mid, input, 64 ); } void qubit_hash(void *output, const void *input) { unsigned char hash[128] __attribute((aligned(64))); #define hashB hash+64 qubit_ctx_holder ctx; memcpy( &ctx, &qubit_ctx, sizeof(qubit_ctx) ); const int midlen = 64; // bytes const int tail = 80 - midlen; // 16 memcpy( &ctx.luffa, &qubit_luffa_mid, sizeof qubit_luffa_mid ); update_and_final_luffa( &ctx.luffa, hash, input + midlen, tail ); cubehashUpdateDigest( &ctx.cubehash, hash, hash, 64 ); sph_shavite512( &ctx.shavite, hash, 64); sph_shavite512_close( &ctx.shavite, hash); simd512_ctx( &ctx.simd, hash, hash, 64 ); #if defined(__AES__) || defined(__ARM_FEATURE_AES) update_final_echo( &ctx.echo, (BitSequence *) hash, (const BitSequence *) hash, 512 ); #else sph_echo512 (&ctx.echo, (const void*) hash, 64); sph_echo512_close(&ctx.echo, (void*) hash); #endif memcpy(output, hash, 32); } int scanhash_qubit( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t endiandata[20] __attribute__((aligned(64))); uint32_t hash64[8] __attribute__((aligned(64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; int thr_id = mythr->id; // thr_id arg is deprecated const uint32_t Htarg = ptarget[7]; uint64_t htmax[] = { 0, 0xF, 0xFF, 0xFFF, 0xFFFF, 0x10000000 }; uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00, 0xFFFFF000, 0xFFFF0000, 0 }; // we need bigendian data... swab32_array( endiandata, pdata, 20 ); qubit_luffa_midstate( endiandata ); for ( int m=0; m < 6; m++ ) { if ( Htarg <= htmax[m] ) { uint32_t mask = masks[m]; do { pdata[19] = ++n; be32enc(&endiandata[19], n); qubit_hash(hash64, endiandata); if (!(hash64[7] & mask)) if ( fulltest(hash64, ptarget) ) submit_solution( work, hash64, mythr ); } while ( n < max_nonce && !work_restart[thr_id].restart ); break; } } *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } #endif