#include "phi1612-gate.h" #if defined(PHI1612_4WAY) #include #include #include #include #include "algo/skein/skein-hash-4way.h" #include "algo/jh/jh-hash-4way.h" #include "algo/cubehash/sse2/cubehash_sse2.h" #include "algo/fugue/sph_fugue.h" #include "algo/gost/sph_gost.h" #include "algo/echo/aes_ni/hash_api.h" typedef struct { skein512_4way_context skein; jh512_4way_context jh; cubehashParam cube; sph_fugue512_context fugue; sph_gost512_context gost; hashState_echo echo; } phi1612_4way_ctx_holder; phi1612_4way_ctx_holder phi1612_4way_ctx __attribute__ ((aligned (64))); void init_phi1612_4way_ctx() { skein512_4way_init( &phi1612_4way_ctx.skein ); jh512_4way_init( &phi1612_4way_ctx.jh ); cubehashInit( &phi1612_4way_ctx.cube, 512, 16, 32 ); sph_fugue512_init( &phi1612_4way_ctx.fugue ); sph_gost512_init( &phi1612_4way_ctx.gost ); init_echo( &phi1612_4way_ctx.echo, 512 ); }; void phi1612_4way_hash( void *state, const void *input ) { uint64_t hash0[8] __attribute__ ((aligned (64))); uint64_t hash1[8] __attribute__ ((aligned (64))); uint64_t hash2[8] __attribute__ ((aligned (64))); uint64_t hash3[8] __attribute__ ((aligned (64))); uint64_t vhash[8*4] __attribute__ ((aligned (64))); phi1612_4way_ctx_holder ctx; memcpy( &ctx, &phi1612_4way_ctx, sizeof(phi1612_4way_ctx) ); // Skein parallel 4way skein512_4way( &ctx.skein, input, 80 ); skein512_4way_close( &ctx.skein, vhash ); // JH jh512_4way( &ctx.jh, vhash, 64 ); jh512_4way_close( &ctx.jh, vhash ); // Serial to the end mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 ); // Cubehash cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 ); memcpy( &ctx.cube, &phi1612_4way_ctx.cube, sizeof(cubehashParam) ); cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1, 64 ); memcpy( &ctx.cube, &phi1612_4way_ctx.cube, sizeof(cubehashParam) ); cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*) hash2, 64 ); memcpy( &ctx.cube, &phi1612_4way_ctx.cube, sizeof(cubehashParam) ); cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*) hash3, 64 ); // Fugue sph_fugue512( &ctx.fugue, hash0, 64 ); sph_fugue512_close( &ctx.fugue, hash0 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash1, 64 ); sph_fugue512_close( &ctx.fugue, hash1 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash2, 64 ); sph_fugue512_close( &ctx.fugue, hash2 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash3, 64 ); sph_fugue512_close( &ctx.fugue, hash3 ); // Gost sph_gost512( &ctx.gost, hash0, 64 ); sph_gost512_close( &ctx.gost, hash0 ); sph_gost512_init( &ctx.gost ); sph_gost512( &ctx.gost, hash1, 64 ); sph_gost512_close( &ctx.gost, hash1 ); sph_gost512_init( &ctx.gost ); sph_gost512( &ctx.gost, hash2, 64 ); sph_gost512_close( &ctx.gost, hash2 ); sph_gost512_init( &ctx.gost ); sph_gost512( &ctx.gost, hash3, 64 ); sph_gost512_close( &ctx.gost, hash3 ); // Echo update_final_echo( &ctx.echo, (BitSequence *)hash0, (const BitSequence *) hash0, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash1, (const BitSequence *) hash1, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash2, (const BitSequence *) hash2, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash3, (const BitSequence *) hash3, 512 ); memcpy( state, hash0, 32 ); memcpy( state+32, hash1, 32 ); memcpy( state+64, hash2, 32 ); memcpy( state+96, hash3, 32 ); } int scanhash_phi1612_4way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done ) { uint32_t hash[4*8] __attribute__ ((aligned (64))); uint32_t vdata[24*4] __attribute__ ((aligned (64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t _ALIGN(64) endiandata[20]; uint32_t n = first_nonce; uint32_t *nonces = work->nonces; bool *found = work->nfound; int num_found = 0; uint32_t *noncep0 = vdata + 73; // 9*8 + 1 uint32_t *noncep1 = vdata + 75; uint32_t *noncep2 = vdata + 77; uint32_t *noncep3 = vdata + 79; const uint32_t Htarg = ptarget[7]; if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0cff; for ( int k = 0; k < 19; k++ ) be32enc( &endiandata[k], pdata[k] ); uint64_t *edata = (uint64_t*)endiandata; mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 ); do { found[0] = found[1] = found[2] = found[3] = false; be32enc( noncep0, n ); be32enc( noncep1, n+1 ); be32enc( noncep2, n+2 ); be32enc( noncep3, n+3 ); phi1612_4way_hash( hash, vdata ); pdata[19] = n; if ( hash[7] <= Htarg && fulltest( hash, ptarget ) ) { found[0] = true; num_found++; nonces[0] = n; work_set_target_ratio( work, hash ); } if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) ) { found[1] = true; num_found++; nonces[1] = n+1; work_set_target_ratio( work, hash+8 ); } if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) ) { found[2] = true; num_found++; nonces[2] = n+2; work_set_target_ratio( work, hash+16 ); } if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) ) { found[3] = true; num_found++; nonces[3] = n+3; work_set_target_ratio( work, hash+24 ); } n += 4; } while ( ( num_found == 0 ) && ( n < max_nonce ) && !work_restart[thr_id].restart ); *hashes_done = n - first_nonce + 1; return num_found; } #endif