/** * x16r algo implementation * * Implementation by tpruvot@github Jan 2018 * Optimized by JayDDee@github Jan 2018 */ #include "x16r-gate.h" #include #include #include void x16r_prehash( void *edata, void *pdata ) { const char elem = x16r_hash_order[0]; const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch ( algo ) { case JH: sph_jh512_init( &x16_ctx.jh ); sph_jh512( &x16_ctx.jh, edata, 64 ); break; case SKEIN: sph_skein512_init( &x16_ctx.skein ); sph_skein512( &x16_ctx.skein, edata, 64 ); break; case LUFFA: init_luffa( &x16_ctx.luffa, 512 ); update_luffa( &x16_ctx.luffa, (const BitSequence*)edata, 64 ); break; case CUBEHASH: cubehashInit( &x16_ctx.cube, 512, 16, 32 ); cubehashUpdate( &x16_ctx.cube, (const byte*)edata, 64 ); break; case HAMSI: sph_hamsi512_init( &x16_ctx.hamsi ); sph_hamsi512( &x16_ctx.hamsi, edata, 64 ); break; case SHABAL: sph_shabal512_init( &x16_ctx.shabal ); sph_shabal512( &x16_ctx.shabal, edata, 64 ); break; case WHIRLPOOL: sph_whirlpool_init( &x16_ctx.whirlpool ); sph_whirlpool( &x16_ctx.whirlpool, edata, 64 ); break; } } int x16r_hash_generic( void* output, const void* input, int thrid ) { uint32_t _ALIGN(128) hash[16]; x16r_context_overlay ctx; memcpy( &ctx, &x16_ctx, sizeof(ctx) ); void *in = (void*) input; int size = 80; for ( int i = 0; i < 16; i++ ) { const char elem = x16r_hash_order[i]; const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch ( algo ) { case BLAKE: sph_blake512_init( &ctx.blake ); sph_blake512( &ctx.blake, in, size ); sph_blake512_close( &ctx.blake, hash ); break; case BMW: sph_bmw512_init( &ctx.bmw ); sph_bmw512(&ctx.bmw, in, size); sph_bmw512_close(&ctx.bmw, hash); break; case GROESTL: #if defined(__AES__) groestl512_full( &ctx.groestl, (char*)hash, (char*)in, size<<3 ); #else sph_groestl512_init( &ctx.groestl ); sph_groestl512( &ctx.groestl, in, size ); sph_groestl512_close(&ctx.groestl, hash); #endif break; case JH: if ( i == 0 ) sph_jh512(&ctx.jh, in+64, 16 ); else { sph_jh512_init( &ctx.jh ); sph_jh512(&ctx.jh, in, size ); } sph_jh512_close(&ctx.jh, hash ); break; case KECCAK: sph_keccak512_init( &ctx.keccak ); sph_keccak512( &ctx.keccak, in, size ); sph_keccak512_close( &ctx.keccak, hash ); break; case SKEIN: if ( i == 0 ) sph_skein512(&ctx.skein, in+64, 16 ); else { sph_skein512_init( &ctx.skein ); sph_skein512( &ctx.skein, in, size ); } sph_skein512_close( &ctx.skein, hash ); break; case LUFFA: if ( i == 0 ) update_and_final_luffa( &ctx.luffa, (BitSequence*)hash, (const BitSequence*)in+64, 16 ); else luffa_full( &ctx.luffa, (BitSequence*)hash, 512, (const BitSequence*)in, size ); break; case CUBEHASH: if ( i == 0 ) cubehashUpdateDigest( &ctx.cube, (byte*)hash, (const byte*)in+64, 16 ); else cubehash_full( &ctx.cube, (byte*)hash, 512, (byte*)in, size ); break; case SHAVITE: shavite512_full( &ctx.shavite, hash, in, size ); break; case SIMD: simd_full( &ctx.simd, (BitSequence *)hash, (const BitSequence*)in, size<<3 ); break; case ECHO: #if defined(__AES__) echo_full( &ctx.echo, (BitSequence*)hash, 512, (const BitSequence*)in, size ); #else sph_echo512_init( &ctx.echo ); sph_echo512( &ctx.echo, in, size ); sph_echo512_close( &ctx.echo, hash ); #endif break; case HAMSI: if ( i == 0 ) sph_hamsi512( &ctx.hamsi, in+64, 16 ); else { sph_hamsi512_init( &ctx.hamsi ); sph_hamsi512( &ctx.hamsi, in, size ); } sph_hamsi512_close( &ctx.hamsi, hash ); break; case FUGUE: sph_fugue512_full( &ctx.fugue, hash, in, size ); break; case SHABAL: if ( i == 0 ) sph_shabal512( &ctx.shabal, in+64, 16 ); else { sph_shabal512_init( &ctx.shabal ); sph_shabal512( &ctx.shabal, in, size ); } sph_shabal512_close( &ctx.shabal, hash ); break; case WHIRLPOOL: if ( i == 0 ) { sph_whirlpool( &ctx.whirlpool, in+64, 16 ); sph_whirlpool_close( &ctx.whirlpool, hash ); } else sph_whirlpool512_full( &ctx.whirlpool, hash, in, size ); break; case SHA_512: SHA512_Init( &ctx.sha512 ); SHA512_Update( &ctx.sha512, in, size ); SHA512_Final( (unsigned char*) hash, &ctx.sha512 ); break; } if ( work_restart[thrid].restart ) return 0; in = (void*) hash; size = 64; } memcpy( output, hash, 64 ); return true; } int x16r_hash( void* output, const void* input, int thrid ) { uint8_t hash[64] __attribute__ ((aligned (64))); if ( !x16r_hash_generic( hash, input, thrid ) ) return 0; memcpy( output, hash, 32 ); return 1; } int scanhash_x16r( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t _ALIGN(128) hash32[8]; uint32_t _ALIGN(128) edata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const int thr_id = mythr->id; uint32_t nonce = first_nonce; volatile uint8_t *restart = &( work_restart[thr_id].restart ); const bool bench = opt_benchmark; if ( bench ) ptarget[7] = 0x0cff; mm128_bswap32_80( edata, pdata ); static __thread uint32_t s_ntime = UINT32_MAX; if ( s_ntime != pdata[17] ) { uint32_t ntime = swab32(pdata[17]); x16_r_s_getAlgoString( (const uint8_t*)(&edata[1]), x16r_hash_order ); s_ntime = ntime; if ( opt_debug && !thr_id ) applog( LOG_DEBUG, "hash order %s (%08x)", x16r_hash_order, ntime ); } x16r_prehash( edata, pdata ); do { edata[19] = nonce; if ( x16r_hash( hash32, edata, thr_id ) ) if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) ) { pdata[19] = bswap_32( nonce ); submit_solution( work, hash32, mythr ); } nonce++; } while ( nonce < max_nonce && !(*restart) ); pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce; return 0; }