/** * Implementation of the Lyra2 Password Hashing Scheme (PHS). * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "compat.h" #include "lyra2.h" #include "sponge.h" /** * Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords * whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, * where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all * integer parameters (treated as type "unsigned int") in the order they are provided, plus the value * of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). * * @param K The derived key to be output by the algorithm * @param kLen Desired key length * @param pwd User password * @param pwdlen Password length * @param salt Salt * @param saltlen Salt length * @param timeCost Parameter to determine the processing time (T) * @param nRows Number or rows of the memory matrix (R) * @param nCols Number of columns of the memory matrix (C) * * @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) */ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 // int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy //====================================================================/ //=== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; uint64_t *ptrWord = wholeMatrix; // memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows ); //=== Getting the password + salt + basil padded with 10*1 ==========// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen) ); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block // from here on it's all simd acces to state and matrix // define vector pointers and adjust sizes and pointer offsets //================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // initState( state ); //========================= Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN ); /* for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //===================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //----------------------------------------------- rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //---------------------------------------------------- row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //---------------------------------------------------- } while (row != 0); } //===================== Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); return 0; } ///////////////////////////////////////////////// int LYRA2REV3( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 // int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy uint64_t instance = 0; //====================================================================/ //=== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; const int64_t BLOCK_LEN = BLOCK_LEN_BLAKE2_SAFE_INT64; /* const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; */ uint64_t *ptrWord = wholeMatrix; // memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows ); //=== Getting the password + salt + basil padded with 10*1 ==========// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen) ); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block // from here on it's all simd acces to state and matrix // define vector pointers and adjust sizes and pointer offsets //================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // initState( state ); //========================= Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN ); /* for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //===================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1; // step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //----------------------------------------------- instance = state[instance & 0xF]; rowa = state[instance & 0xF] & (unsigned int)(nRows-1); // rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //---------------------------------------------------- row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //---------------------------------------------------- } while (row != 0); } //===================== Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); return 0; } ////////////////////////////////////////////////// int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //========================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 // int64_t i; //auxiliary iteration counter //=======================================================================/ //======= Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; // const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows ); //==== Getting the password + salt + basil padded with 10*1 ============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding uint64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof (uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES ); //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &pwdlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &saltlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &timeCost, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nRows, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nCols, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //=================== Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // uint64_t *state = _mm_malloc(16 * sizeof(uint64_t), 32); // if (state == NULL) { // return -1; // } // initState( state ); //============================== Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits uint64_t *ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN_BLAKE2_SAFE_INT64 ); /* for ( i = 0; i < nBlocksInput; i++ ) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN_BLAKE2_SAFE_INT64; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0(state, &wholeMatrix[0], nCols); //The locally copied password is most likely overwritten here reducedDuplexRow1(state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //======================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for ( tau = 1; tau <= timeCost; tau++ ) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //---------------------------------------------------------------------- //rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //----------------------------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //--------------------------------------------------------------- //row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //-------------------------------------------------------------------- } while (row != 0); } //========================= Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze( state, K, kLen ); return 0; } // Lyra2RE doesn't like the new wholeMatrix implementation int LYRA2RE( void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen, const void *salt, const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows, const uint64_t nCols ) { //====================== Basic variables ============================// uint64_t _ALIGN(256) state[16]; int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy //====================================================================/ //=== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; i = (int64_t)ROW_LEN_BYTES * nRows; uint64_t *wholeMatrix = _mm_malloc( i, 64 ); if (wholeMatrix == NULL) return -1; #if defined(__AVX2__) memset_zero_256( (__m256i*)wholeMatrix, i>>5 ); #elif defined(__SSE2__) memset_zero_128( (__m128i*)wholeMatrix, i>>4 ); #else memset( wholeMatrix, 0, i ); #endif uint64_t *ptrWord = wholeMatrix; //=== Getting the password + salt + basil padded with 10*1 ==========// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; // memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES // - (saltlen + pwdlen) ); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) // initState( state ); //========================= Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN ); /* for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } */ //Initializes M[0] and M[1] reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //===================== Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //----------------------------------------------- rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------- //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols ); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //---------------------------------------------------- row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //---------------------------------------------------- } while (row != 0); } //===================== Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); //================== Freeing the memory =============================// _mm_free(wholeMatrix); return 0; }