#include "lyra2-gate.h" #include #if defined (LYRA2REV3_4WAY) #include "algo/blake/blake-hash-4way.h" #include "algo/bmw/bmw-hash-4way.h" #include "algo/cubehash/cubehash_sse2.h" typedef struct { blake256_4way_context blake; cubehashParam cube; bmw256_4way_context bmw; } lyra2v3_4way_ctx_holder; static lyra2v3_4way_ctx_holder l2v3_4way_ctx; bool init_lyra2rev3_4way_ctx() { blake256_4way_init( &l2v3_4way_ctx.blake ); cubehashInit( &l2v3_4way_ctx.cube, 256, 16, 32 ); bmw256_4way_init( &l2v3_4way_ctx.bmw ); return true; } void lyra2rev3_4way_hash( void *state, const void *input ) { uint32_t vhash[8*4] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) ); blake256_4way( &ctx.blake, input, 80 ); blake256_4way_close( &ctx.blake, vhash ); mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 ); bmw256_4way( &ctx.bmw, vhash, 32 ); bmw256_4way_close( &ctx.bmw, state ); } int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t edata[20] __attribute__ ((aligned (64))); uint32_t *hash7 = &(hash[7<<2]); uint32_t lane_hash[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t Htarg = ptarget[7]; __m128i *noncev = (__m128i*)vdata + 19; // aligned /* int */ thr_id = mythr->id; // thr_id arg is deprecated if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff; // Need big endian data casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) ); casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) ); casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) ); casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) ); casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) ); mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 ); do { *noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) ); lyra2rev3_4way_hash( hash, vdata ); pdata[19] = n; for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg ) { mm128_extract_lane_4x32( lane_hash, hash, lane, 256 ); if ( fulltest( lane_hash, ptarget ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr, lane ); } } n += 4; } while ( (n < max_nonce-4) && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; return 0; } #endif