#include "x17-gate.h" #if defined(X17_4WAY) #include #include #include #include #include "algo/blake/blake-hash-4way.h" #include "algo/bmw/bmw-hash-4way.h" #include "algo/groestl/aes_ni/hash-groestl.h" #include "algo/skein/skein-hash-4way.h" #include "algo/jh/jh-hash-4way.h" #include "algo/keccak/keccak-hash-4way.h" #include "algo/luffa/luffa-hash-2way.h" #include "algo/cubehash/cube-hash-2way.h" #include "algo/shavite/sph_shavite.h" #include "algo/shavite/shavite-hash-2way.h" #include "algo/simd/simd-hash-2way.h" #include "algo/echo/aes_ni/hash_api.h" #include "algo/hamsi/hamsi-hash-4way.h" #include "algo/fugue/sph_fugue.h" #include "algo/shabal/shabal-hash-4way.h" #include "algo/whirlpool/sph_whirlpool.h" #include "algo/haval/haval-hash-4way.h" #include "algo/sha/sha2-hash-4way.h" //typedef struct { union _x17_4way_context_overlay { blake512_4way_context blake; bmw512_4way_context bmw; hashState_groestl groestl; skein512_4way_context skein; jh512_4way_context jh; keccak512_4way_context keccak; luffa_2way_context luffa; cube_2way_context cube; shavite512_2way_context shavite; simd_2way_context simd; hashState_echo echo; hamsi512_4way_context hamsi; sph_fugue512_context fugue; shabal512_4way_context shabal; sph_whirlpool_context whirlpool; sha512_4way_context sha512; haval256_5_4way_context haval; }; typedef union _x17_4way_context_overlay x17_4way_context_overlay; /* x17_4way_ctx_holder x17_4way_ctx __attribute__ ((aligned (64))); void init_x17_4way_ctx() { blake512_4way_init( &x17_4way_ctx.blake ); bmw512_4way_init( &x17_4way_ctx.bmw ); init_groestl( &x17_4way_ctx.groestl, 64 ); skein512_4way_init( &x17_4way_ctx.skein ); jh512_4way_init( &x17_4way_ctx.jh ); keccak512_4way_init( &x17_4way_ctx.keccak ); luffa_2way_init( &x17_4way_ctx.luffa, 512 ); cube_2way_init( &x17_4way_ctx.cube, 512, 16, 32 ); shavite512_2way_init( &x17_4way_ctx.shavite ); simd_2way_init( &x17_4way_ctx.simd, 512 ); init_echo( &x17_4way_ctx.echo, 512 ); hamsi512_4way_init( &x17_4way_ctx.hamsi ); sph_fugue512_init( &x17_4way_ctx.fugue ); shabal512_4way_init( &x17_4way_ctx.shabal ); sph_whirlpool_init( &x17_4way_ctx.whirlpool ); sha512_4way_init( &x17_4way_ctx.sha512 ); haval256_5_4way_init( &x17_4way_ctx.haval ); }; */ void x17_4way_hash( void *state, const void *input ) { uint64_t hash0[8] __attribute__ ((aligned (64))); uint64_t hash1[8] __attribute__ ((aligned (64))); uint64_t hash2[8] __attribute__ ((aligned (64))); uint64_t hash3[8] __attribute__ ((aligned (64))); uint64_t vhash[8*4] __attribute__ ((aligned (64))); uint64_t vhashA[8*4] __attribute__ ((aligned (64))); uint64_t vhashB[8*4] __attribute__ ((aligned (64))); x17_4way_context_overlay ctx; // memcpy( &ctx, &x17_4way_ctx, sizeof(x17_4way_ctx) ); // 1 Blake parallel 4 way 64 bit blake512_4way_init( &ctx.blake ); blake512_4way( &ctx.blake, input, 80 ); blake512_4way_close( &ctx.blake, vhash ); // 2 Bmw bmw512_4way_init( &ctx.bmw ); bmw512_4way( &ctx.bmw, vhash, 64 ); bmw512_4way_close( &ctx.bmw, vhash ); // Serialize mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 ); // 3 Groestl init_groestl( &ctx.groestl, 64 ); update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 ); init_groestl( &ctx.groestl, 64 ); update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 ); init_groestl( &ctx.groestl, 64 ); update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 ); init_groestl( &ctx.groestl, 64 ); update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 ); // Parallellize mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, 512 ); // 4 Skein parallel 4 way 64 bit skein512_4way_init( &ctx.skein ); skein512_4way( &ctx.skein, vhash, 64 ); skein512_4way_close( &ctx.skein, vhash ); // 5 JH jh512_4way_init( &ctx.jh ); jh512_4way( &ctx.jh, vhash, 64 ); jh512_4way_close( &ctx.jh, vhash ); // 6 Keccak keccak512_4way_init( &ctx.keccak ); keccak512_4way( &ctx.keccak, vhash, 64 ); keccak512_4way_close( &ctx.keccak, vhash ); // 7 Luffa parallel 2 way 128 bit mm256_reinterleave_4x64_2x128( vhashA, vhashB, vhash, 512 ); luffa_2way_init( &ctx.luffa, 512 ); luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 ); luffa_2way_init( &ctx.luffa, 512 ); luffa_2way_update_close( &ctx.luffa, vhashB, vhashB, 64 ); // 8 Cubehash cube_2way_init( &ctx.cube, 512, 16, 32 ); cube_2way_update_close( &ctx.cube, vhashA, vhashA, 64 ); cube_2way_init( &ctx.cube, 512, 16, 32 ); cube_2way_update_close( &ctx.cube, vhashB, vhashB, 64 ); // 9 Shavite shavite512_2way_init( &ctx.shavite ); shavite512_2way_update_close( &ctx.shavite, vhashA, vhashA, 64 ); shavite512_2way_init( &ctx.shavite ); shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, 64 ); // 10 Simd simd_2way_init( &ctx.simd, 512 ); simd_2way_update_close( &ctx.simd, vhashA, vhashA, 512 ); simd_2way_init( &ctx.simd, 512 ); simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 ); mm256_deinterleave_2x128( hash0, hash1, vhashA, 512 ); mm256_deinterleave_2x128( hash2, hash3, vhashB, 512 ); // 11 Echo serial init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash0, (const BitSequence *) hash0, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash1, (const BitSequence *) hash1, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash2, (const BitSequence *) hash2, 512 ); init_echo( &ctx.echo, 512 ); update_final_echo( &ctx.echo, (BitSequence *)hash3, (const BitSequence *) hash3, 512 ); // 12 Hamsi parallel 4 way 64 bit mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, 512 ); hamsi512_4way_init( &ctx.hamsi ); hamsi512_4way( &ctx.hamsi, vhash, 64 ); hamsi512_4way_close( &ctx.hamsi, vhash ); mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 ); // 13 Fugue serial sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash0, 64 ); sph_fugue512_close( &ctx.fugue, hash0 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash1, 64 ); sph_fugue512_close( &ctx.fugue, hash1 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash2, 64 ); sph_fugue512_close( &ctx.fugue, hash2 ); sph_fugue512_init( &ctx.fugue ); sph_fugue512( &ctx.fugue, hash3, 64 ); sph_fugue512_close( &ctx.fugue, hash3 ); // 14 Shabal, parallel 4 way 32 bit mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 512 ); shabal512_4way_init( &ctx.shabal ); shabal512_4way( &ctx.shabal, vhash, 64 ); shabal512_4way_close( &ctx.shabal, vhash ); mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 512 ); // 15 Whirlpool serial sph_whirlpool_init( &ctx.whirlpool ); sph_whirlpool( &ctx.whirlpool, hash0, 64 ); sph_whirlpool_close( &ctx.whirlpool, hash0 ); sph_whirlpool_init( &ctx.whirlpool ); sph_whirlpool( &ctx.whirlpool, hash1, 64 ); sph_whirlpool_close( &ctx.whirlpool, hash1 ); sph_whirlpool_init( &ctx.whirlpool ); sph_whirlpool( &ctx.whirlpool, hash2, 64 ); sph_whirlpool_close( &ctx.whirlpool, hash2 ); sph_whirlpool_init( &ctx.whirlpool ); sph_whirlpool( &ctx.whirlpool, hash3, 64 ); sph_whirlpool_close( &ctx.whirlpool, hash3 ); // 16 SHA512 parallel 64 bit mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, 512 ); sha512_4way_init( &ctx.sha512 ); sha512_4way( &ctx.sha512, vhash, 64 ); sha512_4way_close( &ctx.sha512, vhash ); // 17 Haval parallel 32 bit mm256_reinterleave_4x32( vhashB, vhash, 512 ); haval256_5_4way_init( &ctx.haval ); haval256_5_4way( &ctx.haval, vhashB, 64 ); haval256_5_4way_close( &ctx.haval, state ); } int scanhash_x17_4way( int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[4*8] __attribute__ ((aligned (64))); uint32_t *hash7 = &(hash[7<<2]); uint32_t lane_hash[8]; uint32_t vdata[24*4] __attribute__ ((aligned (64))); uint32_t endiandata[20] __attribute__((aligned(64))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t n = pdata[19]; const uint32_t first_nonce = pdata[19]; uint32_t *nonces = work->nonces; int num_found = 0; __m256i *noncev = (__m256i*)vdata + 9; // aligned /* int */ thr_id = mythr->id; // thr_id arg is deprecated const uint32_t Htarg = ptarget[7]; uint64_t htmax[] = { 0, 0xF, 0xFF, 0xFFF, 0xFFFF, 0x10000000 }; uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00, 0xFFFFF000, 0xFFFF0000, 0 }; // Need big endian data casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) ); casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) ); casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) ); uint64_t *edata = (uint64_t*)endiandata; mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 ); for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] ) { uint32_t mask = masks[m]; do { *noncev = mm256_interleave_blend_32( mm256_bswap_32( _mm256_set_epi32( n+3, 0,n+2, 0,n+1, 0, n, 0 ) ), *noncev ); x17_4way_hash( hash, vdata ); for ( int lane = 0; lane < 4; lane++ ) if ( ( ( hash7[ lane ] & mask ) == 0 ) ) { mm128_extract_lane_4x32( lane_hash, hash, lane, 256 ); if ( fulltest( lane_hash, ptarget ) ) { pdata[19] = n + lane; nonces[ num_found++ ] = n + lane; work_set_target_ratio( work, lane_hash ); } } n += 4; } while ( ( num_found == 0 ) && ( n < max_nonce ) && !work_restart[thr_id].restart ); break; } *hashes_done = n - first_nonce + 1; return num_found; } #endif