/* groestl-intr-aes.h Aug 2011 * * Groestl implementation with intrinsics using ssse3, sse4.1, and aes * instructions. * Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz * * This code is placed in the public domain */ #include #include #include "hash-groestl.h" /* global constants */ __m128i ROUND_CONST_Lx; //__m128i ROUND_CONST_L0[ROUNDS512]; //__m128i ROUND_CONST_L7[ROUNDS512]; __m128i ROUND_CONST_P[ROUNDS1024]; __m128i ROUND_CONST_Q[ROUNDS1024]; __m128i TRANSP_MASK; __m128i SUBSH_MASK[8]; __m128i ALL_1B; __m128i ALL_FF; #define tos(a) #a #define tostr(a) tos(a) /* xmm[i] will be multiplied by 2 * xmm[j] will be lost * xmm[k] has to be all 0x1b */ #define MUL2(i, j, k){\ j = _mm_xor_si128(j, j);\ j = _mm_cmpgt_epi8(j, i);\ i = _mm_add_epi8(i, i);\ j = _mm_and_si128(j, k);\ i = _mm_xor_si128(i, j);\ } /**/ /* Yet another implementation of MixBytes. This time we use the formulae (3) from the paper "Byte Slicing Groestl". Input: a0, ..., a7 Output: b0, ..., b7 = MixBytes(a0,...,a7). but we use the relations: t_i = a_i + a_{i+3} x_i = t_i + t_{i+3} y_i = t_i + t+{i+2} + a_{i+6} z_i = 2*x_i w_i = z_i + y_{i+4} v_i = 2*w_i b_i = v_{i+3} + y_{i+4} We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there and then adding v_i computed in the meantime in registers xmm0..xmm7. We almost fit into 16 registers, need only 3 spills to memory. This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b. K. Matusiewicz, 2011/05/29 */ #define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* t_i = a_i + a_{i+1} */\ b6 = a0;\ b7 = a1;\ a0 = _mm_xor_si128(a0, a1);\ b0 = a2;\ a1 = _mm_xor_si128(a1, a2);\ b1 = a3;\ a2 = _mm_xor_si128(a2, a3);\ b2 = a4;\ a3 = _mm_xor_si128(a3, a4);\ b3 = a5;\ a4 = _mm_xor_si128(a4, a5);\ b4 = a6;\ a5 = _mm_xor_si128(a5, a6);\ b5 = a7;\ a6 = _mm_xor_si128(a6, a7);\ a7 = _mm_xor_si128(a7, b6);\ \ /* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\ b0 = _mm_xor_si128(b0, a4);\ b6 = _mm_xor_si128(b6, a4);\ b1 = _mm_xor_si128(b1, a5);\ b7 = _mm_xor_si128(b7, a5);\ b2 = _mm_xor_si128(b2, a6);\ b0 = _mm_xor_si128(b0, a6);\ /* spill values y_4, y_5 to memory */\ TEMP0 = b0;\ b3 = _mm_xor_si128(b3, a7);\ b1 = _mm_xor_si128(b1, a7);\ TEMP1 = b1;\ b4 = _mm_xor_si128(b4, a0);\ b2 = _mm_xor_si128(b2, a0);\ /* save values t0, t1, t2 to xmm8, xmm9 and memory */\ b0 = a0;\ b5 = _mm_xor_si128(b5, a1);\ b3 = _mm_xor_si128(b3, a1);\ b1 = a1;\ b6 = _mm_xor_si128(b6, a2);\ b4 = _mm_xor_si128(b4, a2);\ TEMP2 = a2;\ b7 = _mm_xor_si128(b7, a3);\ b5 = _mm_xor_si128(b5, a3);\ \ /* compute x_i = t_i + t_{i+3} */\ a0 = _mm_xor_si128(a0, a3);\ a1 = _mm_xor_si128(a1, a4);\ a2 = _mm_xor_si128(a2, a5);\ a3 = _mm_xor_si128(a3, a6);\ a4 = _mm_xor_si128(a4, a7);\ a5 = _mm_xor_si128(a5, b0);\ a6 = _mm_xor_si128(a6, b1);\ a7 = _mm_xor_si128(a7, TEMP2);\ \ /* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\ /* compute w_i : add y_{i+4} */\ b1 = ALL_1B;\ MUL2(a0, b0, b1);\ a0 = _mm_xor_si128(a0, TEMP0);\ MUL2(a1, b0, b1);\ a1 = _mm_xor_si128(a1, TEMP1);\ MUL2(a2, b0, b1);\ a2 = _mm_xor_si128(a2, b2);\ MUL2(a3, b0, b1);\ a3 = _mm_xor_si128(a3, b3);\ MUL2(a4, b0, b1);\ a4 = _mm_xor_si128(a4, b4);\ MUL2(a5, b0, b1);\ a5 = _mm_xor_si128(a5, b5);\ MUL2(a6, b0, b1);\ a6 = _mm_xor_si128(a6, b6);\ MUL2(a7, b0, b1);\ a7 = _mm_xor_si128(a7, b7);\ \ /* compute v_i : double w_i */\ /* add to y_4 y_5 .. v3, v4, ... */\ MUL2(a0, b0, b1);\ b5 = _mm_xor_si128(b5, a0);\ MUL2(a1, b0, b1);\ b6 = _mm_xor_si128(b6, a1);\ MUL2(a2, b0, b1);\ b7 = _mm_xor_si128(b7, a2);\ MUL2(a5, b0, b1);\ b2 = _mm_xor_si128(b2, a5);\ MUL2(a6, b0, b1);\ b3 = _mm_xor_si128(b3, a6);\ MUL2(a7, b0, b1);\ b4 = _mm_xor_si128(b4, a7);\ MUL2(a3, b0, b1);\ MUL2(a4, b0, b1);\ b0 = TEMP0;\ b1 = TEMP1;\ b0 = _mm_xor_si128(b0, a3);\ b1 = _mm_xor_si128(b1, a4);\ }/*MixBytes*/ #define SET_CONSTANTS(){\ ALL_FF = _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);\ ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\ TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\ SUBSH_MASK[0] = _mm_set_epi32(0x0306090c, 0x0f020508, 0x0b0e0104, 0x070a0d00);\ SUBSH_MASK[1] = _mm_set_epi32(0x04070a0d, 0x00030609, 0x0c0f0205, 0x080b0e01);\ SUBSH_MASK[2] = _mm_set_epi32(0x05080b0e, 0x0104070a, 0x0d000306, 0x090c0f02);\ SUBSH_MASK[3] = _mm_set_epi32(0x06090c0f, 0x0205080b, 0x0e010407, 0x0a0d0003);\ SUBSH_MASK[4] = _mm_set_epi32(0x070a0d00, 0x0306090c, 0x0f020508, 0x0b0e0104);\ SUBSH_MASK[5] = _mm_set_epi32(0x080b0e01, 0x04070a0d, 0x00030609, 0x0c0f0205);\ SUBSH_MASK[6] = _mm_set_epi32(0x090c0f02, 0x05080b0e, 0x0104070a, 0x0d000306);\ SUBSH_MASK[7] = _mm_set_epi32(0x0e010407, 0x0a0d0003, 0x06090c0f, 0x0205080b);\ for(i = 0; i < ROUNDS1024; i++)\ {\ ROUND_CONST_P[i] = _mm_set_epi32(0xf0e0d0c0 ^ (i * 0x01010101), 0xb0a09080 ^ (i * 0x01010101), 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\ ROUND_CONST_Q[i] = _mm_set_epi32(0x0f1f2f3f ^ (i * 0x01010101), 0x4f5f6f7f ^ (i * 0x01010101), 0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101));\ }\ }while(0);\ /* one round * a0-a7 = input rows * b0-b7 = output rows */ #define SUBMIX(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* SubBytes */\ b0 = _mm_xor_si128(b0, b0);\ a0 = _mm_aesenclast_si128(a0, b0);\ a1 = _mm_aesenclast_si128(a1, b0);\ a2 = _mm_aesenclast_si128(a2, b0);\ a3 = _mm_aesenclast_si128(a3, b0);\ a4 = _mm_aesenclast_si128(a4, b0);\ a5 = _mm_aesenclast_si128(a5, b0);\ a6 = _mm_aesenclast_si128(a6, b0);\ a7 = _mm_aesenclast_si128(a7, b0);\ /* MixBytes */\ MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\ } #define ROUNDS_P(){\ u8 round_counter = 0;\ for(round_counter = 0; round_counter < 14; round_counter+=2) {\ /* AddRoundConstant P1024 */\ xmm8 = _mm_xor_si128(xmm8, (ROUND_CONST_P[round_counter]));\ /* ShiftBytes P1024 + pre-AESENCLAST */\ xmm8 = _mm_shuffle_epi8(xmm8, (SUBSH_MASK[0]));\ xmm9 = _mm_shuffle_epi8(xmm9, (SUBSH_MASK[1]));\ xmm10 = _mm_shuffle_epi8(xmm10, (SUBSH_MASK[2]));\ xmm11 = _mm_shuffle_epi8(xmm11, (SUBSH_MASK[3]));\ xmm12 = _mm_shuffle_epi8(xmm12, (SUBSH_MASK[4]));\ xmm13 = _mm_shuffle_epi8(xmm13, (SUBSH_MASK[5]));\ xmm14 = _mm_shuffle_epi8(xmm14, (SUBSH_MASK[6]));\ xmm15 = _mm_shuffle_epi8(xmm15, (SUBSH_MASK[7]));\ /* SubBytes + MixBytes */\ SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ \ /* AddRoundConstant P1024 */\ xmm0 = _mm_xor_si128(xmm0, (ROUND_CONST_P[round_counter+1]));\ xmm0 = _mm_shuffle_epi8(xmm0, (SUBSH_MASK[0]));\ xmm1 = _mm_shuffle_epi8(xmm1, (SUBSH_MASK[1]));\ xmm2 = _mm_shuffle_epi8(xmm2, (SUBSH_MASK[2]));\ xmm3 = _mm_shuffle_epi8(xmm3, (SUBSH_MASK[3]));\ xmm4 = _mm_shuffle_epi8(xmm4, (SUBSH_MASK[4]));\ xmm5 = _mm_shuffle_epi8(xmm5, (SUBSH_MASK[5]));\ xmm6 = _mm_shuffle_epi8(xmm6, (SUBSH_MASK[6]));\ xmm7 = _mm_shuffle_epi8(xmm7, (SUBSH_MASK[7]));\ SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ }\ } #define ROUNDS_Q(){\ u8 round_counter = 0;\ for(round_counter = 0; round_counter < 14; round_counter+=2) {\ /* AddRoundConstant Q1024 */\ xmm1 = ALL_FF;\ xmm8 = _mm_xor_si128(xmm8, xmm1);\ xmm9 = _mm_xor_si128(xmm9, xmm1);\ xmm10 = _mm_xor_si128(xmm10, xmm1);\ xmm11 = _mm_xor_si128(xmm11, xmm1);\ xmm12 = _mm_xor_si128(xmm12, xmm1);\ xmm13 = _mm_xor_si128(xmm13, xmm1);\ xmm14 = _mm_xor_si128(xmm14, xmm1);\ xmm15 = _mm_xor_si128(xmm15, (ROUND_CONST_Q[round_counter]));\ /* ShiftBytes Q1024 + pre-AESENCLAST */\ xmm8 = _mm_shuffle_epi8(xmm8, (SUBSH_MASK[1]));\ xmm9 = _mm_shuffle_epi8(xmm9, (SUBSH_MASK[3]));\ xmm10 = _mm_shuffle_epi8(xmm10, (SUBSH_MASK[5]));\ xmm11 = _mm_shuffle_epi8(xmm11, (SUBSH_MASK[7]));\ xmm12 = _mm_shuffle_epi8(xmm12, (SUBSH_MASK[0]));\ xmm13 = _mm_shuffle_epi8(xmm13, (SUBSH_MASK[2]));\ xmm14 = _mm_shuffle_epi8(xmm14, (SUBSH_MASK[4]));\ xmm15 = _mm_shuffle_epi8(xmm15, (SUBSH_MASK[6]));\ /* SubBytes + MixBytes */\ SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ \ /* AddRoundConstant Q1024 */\ xmm9 = ALL_FF;\ xmm0 = _mm_xor_si128(xmm0, xmm9);\ xmm1 = _mm_xor_si128(xmm1, xmm9);\ xmm2 = _mm_xor_si128(xmm2, xmm9);\ xmm3 = _mm_xor_si128(xmm3, xmm9);\ xmm4 = _mm_xor_si128(xmm4, xmm9);\ xmm5 = _mm_xor_si128(xmm5, xmm9);\ xmm6 = _mm_xor_si128(xmm6, xmm9);\ xmm7 = _mm_xor_si128(xmm7, (ROUND_CONST_Q[round_counter+1]));\ /* ShiftBytes Q1024 + pre-AESENCLAST */\ xmm0 = _mm_shuffle_epi8(xmm0, (SUBSH_MASK[1]));\ xmm1 = _mm_shuffle_epi8(xmm1, (SUBSH_MASK[3]));\ xmm2 = _mm_shuffle_epi8(xmm2, (SUBSH_MASK[5]));\ xmm3 = _mm_shuffle_epi8(xmm3, (SUBSH_MASK[7]));\ xmm4 = _mm_shuffle_epi8(xmm4, (SUBSH_MASK[0]));\ xmm5 = _mm_shuffle_epi8(xmm5, (SUBSH_MASK[2]));\ xmm6 = _mm_shuffle_epi8(xmm6, (SUBSH_MASK[4]));\ xmm7 = _mm_shuffle_epi8(xmm7, (SUBSH_MASK[6]));\ /* SubBytes + MixBytes */\ SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ }\ } /* Matrix Transpose * input is a 1024-bit state with two columns in one xmm * output is a 1024-bit state with two rows in one xmm * inputs: i0-i7 * outputs: i0-i7 * clobbers: t0-t7 */ #define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\ t0 = TRANSP_MASK;\ \ i6 = _mm_shuffle_epi8(i6, t0);\ i0 = _mm_shuffle_epi8(i0, t0);\ i1 = _mm_shuffle_epi8(i1, t0);\ i2 = _mm_shuffle_epi8(i2, t0);\ i3 = _mm_shuffle_epi8(i3, t0);\ t1 = i2;\ i4 = _mm_shuffle_epi8(i4, t0);\ i5 = _mm_shuffle_epi8(i5, t0);\ t2 = i4;\ t3 = i6;\ i7 = _mm_shuffle_epi8(i7, t0);\ \ /* continue with unpack using 4 temp registers */\ t0 = i0;\ t2 = _mm_unpackhi_epi16(t2, i5);\ i4 = _mm_unpacklo_epi16(i4, i5);\ t3 = _mm_unpackhi_epi16(t3, i7);\ i6 = _mm_unpacklo_epi16(i6, i7);\ t0 = _mm_unpackhi_epi16(t0, i1);\ t1 = _mm_unpackhi_epi16(t1, i3);\ i2 = _mm_unpacklo_epi16(i2, i3);\ i0 = _mm_unpacklo_epi16(i0, i1);\ \ /* shuffle with immediate */\ t0 = _mm_shuffle_epi32(t0, 216);\ t1 = _mm_shuffle_epi32(t1, 216);\ t2 = _mm_shuffle_epi32(t2, 216);\ t3 = _mm_shuffle_epi32(t3, 216);\ i0 = _mm_shuffle_epi32(i0, 216);\ i2 = _mm_shuffle_epi32(i2, 216);\ i4 = _mm_shuffle_epi32(i4, 216);\ i6 = _mm_shuffle_epi32(i6, 216);\ \ /* continue with unpack */\ t4 = i0;\ i0 = _mm_unpacklo_epi32(i0, i2);\ t4 = _mm_unpackhi_epi32(t4, i2);\ t5 = t0;\ t0 = _mm_unpacklo_epi32(t0, t1);\ t5 = _mm_unpackhi_epi32(t5, t1);\ t6 = i4;\ i4 = _mm_unpacklo_epi32(i4, i6);\ t7 = t2;\ t6 = _mm_unpackhi_epi32(t6, i6);\ i2 = t0;\ t2 = _mm_unpacklo_epi32(t2, t3);\ i3 = t0;\ t7 = _mm_unpackhi_epi32(t7, t3);\ \ /* there are now 2 rows in each xmm */\ /* unpack to get 1 row of CV in each xmm */\ i1 = i0;\ i1 = _mm_unpackhi_epi64(i1, i4);\ i0 = _mm_unpacklo_epi64(i0, i4);\ i4 = t4;\ i3 = _mm_unpackhi_epi64(i3, t2);\ i5 = t4;\ i2 = _mm_unpacklo_epi64(i2, t2);\ i6 = t5;\ i5 = _mm_unpackhi_epi64(i5, t6);\ i7 = t5;\ i4 = _mm_unpacklo_epi64(i4, t6);\ i7 = _mm_unpackhi_epi64(i7, t7);\ i6 = _mm_unpacklo_epi64(i6, t7);\ /* transpose done */\ }/**/ /* Matrix Transpose Inverse * input is a 1024-bit state with two rows in one xmm * output is a 1024-bit state with two columns in one xmm * inputs: i0-i7 * outputs: (i0, o0, i1, i3, o1, o2, i5, i7) * clobbers: t0-t4 */ #define Matrix_Transpose_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, t0, t1, t2, t3, t4){\ /* transpose matrix to get output format */\ o1 = i0;\ i0 = _mm_unpacklo_epi64(i0, i1);\ o1 = _mm_unpackhi_epi64(o1, i1);\ t0 = i2;\ i2 = _mm_unpacklo_epi64(i2, i3);\ t0 = _mm_unpackhi_epi64(t0, i3);\ t1 = i4;\ i4 = _mm_unpacklo_epi64(i4, i5);\ t1 = _mm_unpackhi_epi64(t1, i5);\ t2 = i6;\ o0 = TRANSP_MASK;\ i6 = _mm_unpacklo_epi64(i6, i7);\ t2 = _mm_unpackhi_epi64(t2, i7);\ /* load transpose mask into a register, because it will be used 8 times */\ i0 = _mm_shuffle_epi8(i0, o0);\ i2 = _mm_shuffle_epi8(i2, o0);\ i4 = _mm_shuffle_epi8(i4, o0);\ i6 = _mm_shuffle_epi8(i6, o0);\ o1 = _mm_shuffle_epi8(o1, o0);\ t0 = _mm_shuffle_epi8(t0, o0);\ t1 = _mm_shuffle_epi8(t1, o0);\ t2 = _mm_shuffle_epi8(t2, o0);\ /* continue with unpack using 4 temp registers */\ t3 = i4;\ o2 = o1;\ o0 = i0;\ t4 = t1;\ \ t3 = _mm_unpackhi_epi16(t3, i6);\ i4 = _mm_unpacklo_epi16(i4, i6);\ o0 = _mm_unpackhi_epi16(o0, i2);\ i0 = _mm_unpacklo_epi16(i0, i2);\ o2 = _mm_unpackhi_epi16(o2, t0);\ o1 = _mm_unpacklo_epi16(o1, t0);\ t4 = _mm_unpackhi_epi16(t4, t2);\ t1 = _mm_unpacklo_epi16(t1, t2);\ /* shuffle with immediate */\ i4 = _mm_shuffle_epi32(i4, 216);\ t3 = _mm_shuffle_epi32(t3, 216);\ o1 = _mm_shuffle_epi32(o1, 216);\ o2 = _mm_shuffle_epi32(o2, 216);\ i0 = _mm_shuffle_epi32(i0, 216);\ o0 = _mm_shuffle_epi32(o0, 216);\ t1 = _mm_shuffle_epi32(t1, 216);\ t4 = _mm_shuffle_epi32(t4, 216);\ /* continue with unpack */\ i1 = i0;\ i3 = o0;\ i5 = o1;\ i7 = o2;\ i0 = _mm_unpacklo_epi32(i0, i4);\ i1 = _mm_unpackhi_epi32(i1, i4);\ o0 = _mm_unpacklo_epi32(o0, t3);\ i3 = _mm_unpackhi_epi32(i3, t3);\ o1 = _mm_unpacklo_epi32(o1, t1);\ i5 = _mm_unpackhi_epi32(i5, t1);\ o2 = _mm_unpacklo_epi32(o2, t4);\ i7 = _mm_unpackhi_epi32(i7, t4);\ /* transpose done */\ }/**/ void INIT( __m128i* chaining ) { static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; /* load IV into registers xmm8 - xmm15 */ xmm8 = chaining[0]; xmm9 = chaining[1]; xmm10 = chaining[2]; xmm11 = chaining[3]; xmm12 = chaining[4]; xmm13 = chaining[5]; xmm14 = chaining[6]; xmm15 = chaining[7]; /* transform chaining value from column ordering into row ordering */ Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7); /* store transposed IV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; } void TF1024( __m128i* chaining, const __m128i* message ) { static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static __m128i QTEMP[8]; static __m128i TEMP0; static __m128i TEMP1; static __m128i TEMP2; #ifdef IACA_TRACE IACA_START; #endif /* load message into registers xmm8 - xmm15 (Q = message) */ xmm8 = message[0]; xmm9 = message[1]; xmm10 = message[2]; xmm11 = message[3]; xmm12 = message[4]; xmm13 = message[5]; xmm14 = message[6]; xmm15 = message[7]; /* transform message M from column ordering into row ordering */ Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7); /* store message M (Q input) for later */ QTEMP[0] = xmm8; QTEMP[1] = xmm9; QTEMP[2] = xmm10; QTEMP[3] = xmm11; QTEMP[4] = xmm12; QTEMP[5] = xmm13; QTEMP[6] = xmm14; QTEMP[7] = xmm15; /* xor CV to message to get P input */ /* result: CV+M in xmm8...xmm15 */ xmm8 = _mm_xor_si128(xmm8, (chaining[0])); xmm9 = _mm_xor_si128(xmm9, (chaining[1])); xmm10 = _mm_xor_si128(xmm10, (chaining[2])); xmm11 = _mm_xor_si128(xmm11, (chaining[3])); xmm12 = _mm_xor_si128(xmm12, (chaining[4])); xmm13 = _mm_xor_si128(xmm13, (chaining[5])); xmm14 = _mm_xor_si128(xmm14, (chaining[6])); xmm15 = _mm_xor_si128(xmm15, (chaining[7])); /* compute permutation P */ /* result: P(CV+M) in xmm8...xmm15 */ ROUNDS_P(); /* xor CV to P output (feed-forward) */ /* result: P(CV+M)+CV in xmm8...xmm15 */ xmm8 = _mm_xor_si128(xmm8, (chaining[0])); xmm9 = _mm_xor_si128(xmm9, (chaining[1])); xmm10 = _mm_xor_si128(xmm10, (chaining[2])); xmm11 = _mm_xor_si128(xmm11, (chaining[3])); xmm12 = _mm_xor_si128(xmm12, (chaining[4])); xmm13 = _mm_xor_si128(xmm13, (chaining[5])); xmm14 = _mm_xor_si128(xmm14, (chaining[6])); xmm15 = _mm_xor_si128(xmm15, (chaining[7])); /* store P(CV+M)+CV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; /* load message M (Q input) into xmm8-15 */ xmm8 = QTEMP[0]; xmm9 = QTEMP[1]; xmm10 = QTEMP[2]; xmm11 = QTEMP[3]; xmm12 = QTEMP[4]; xmm13 = QTEMP[5]; xmm14 = QTEMP[6]; xmm15 = QTEMP[7]; /* compute permutation Q */ /* result: Q(M) in xmm8...xmm15 */ ROUNDS_Q(); /* xor Q output */ /* result: P(CV+M)+CV+Q(M) in xmm8...xmm15 */ xmm8 = _mm_xor_si128(xmm8, (chaining[0])); xmm9 = _mm_xor_si128(xmm9, (chaining[1])); xmm10 = _mm_xor_si128(xmm10, (chaining[2])); xmm11 = _mm_xor_si128(xmm11, (chaining[3])); xmm12 = _mm_xor_si128(xmm12, (chaining[4])); xmm13 = _mm_xor_si128(xmm13, (chaining[5])); xmm14 = _mm_xor_si128(xmm14, (chaining[6])); xmm15 = _mm_xor_si128(xmm15, (chaining[7])); /* store CV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; #ifdef IACA_TRACE IACA_END; #endif return; } void OF1024( __m128i* chaining ) { static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static __m128i TEMP0; static __m128i TEMP1; static __m128i TEMP2; /* load CV into registers xmm8 - xmm15 */ xmm8 = chaining[0]; xmm9 = chaining[1]; xmm10 = chaining[2]; xmm11 = chaining[3]; xmm12 = chaining[4]; xmm13 = chaining[5]; xmm14 = chaining[6]; xmm15 = chaining[7]; /* compute permutation P */ /* result: P(CV) in xmm8...xmm15 */ ROUNDS_P(); /* xor CV to P output (feed-forward) */ /* result: P(CV)+CV in xmm8...xmm15 */ xmm8 = _mm_xor_si128(xmm8, (chaining[0])); xmm9 = _mm_xor_si128(xmm9, (chaining[1])); xmm10 = _mm_xor_si128(xmm10, (chaining[2])); xmm11 = _mm_xor_si128(xmm11, (chaining[3])); xmm12 = _mm_xor_si128(xmm12, (chaining[4])); xmm13 = _mm_xor_si128(xmm13, (chaining[5])); xmm14 = _mm_xor_si128(xmm14, (chaining[6])); xmm15 = _mm_xor_si128(xmm15, (chaining[7])); /* transpose CV back from row ordering to column ordering */ /* result: final hash value in xmm0, xmm6, xmm13, xmm15 */ Matrix_Transpose_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm4, xmm0, xmm6, xmm1, xmm2, xmm3, xmm5, xmm7); /* we only need to return the truncated half of the state */ chaining[4] = xmm0; chaining[5] = xmm6; chaining[6] = xmm13; chaining[7] = xmm15; return; }