#include "miner.h" #include "algo-gate-api.h" #include #include #include #include #include "algo/luffa/sph_luffa.h" #include "algo/cubehash/sph_cubehash.h" #include "algo/shavite/sph_shavite.h" #include "algo/simd/sph_simd.h" #include "algo/echo/sph_echo.h" #include "algo/luffa/sse2/luffa_for_sse2.h" #include "algo/cubehash/sse2/cubehash_sse2.h" #include "algo/simd/sse2/nist.h" #include "algo/shavite/sph_shavite.h" #ifndef NO_AES_NI #include "algo/echo/aes_ni/hash_api.h" #endif typedef struct { hashState_luffa luffa; cubehashParam cubehash; sph_shavite512_context shavite; hashState_sd simd; #ifdef NO_AES_NI sph_echo512_context echo; #else hashState_echo echo; #endif } qubit_ctx_holder; qubit_ctx_holder qubit_ctx; void init_qubit_ctx() { init_luffa(&qubit_ctx.luffa,512); cubehashInit(&qubit_ctx.cubehash,512,16,32); sph_shavite512_init(&qubit_ctx.shavite); init_sd(&qubit_ctx.simd,512); #ifdef NO_AES_NI sph_echo512_init(&qubit_ctx.echo); #else init_echo(&qubit_ctx.echo, 512); #endif }; void qubithash(void *output, const void *input) { unsigned char hash[128]; // uint32_t hashA[16], hashB[16]; #define hashB hash+64 qubit_ctx_holder ctx; memcpy( &ctx, &qubit_ctx, sizeof(qubit_ctx) ); update_luffa( &ctx.luffa, (const BitSequence*)input, 80 ); final_luffa( &ctx.luffa, (BitSequence*)hash); cubehashUpdate( &ctx.cubehash, (const byte*) hash,64); cubehashDigest( &ctx.cubehash, (byte*)hash); sph_shavite512( &ctx.shavite, hash, 64); sph_shavite512_close( &ctx.shavite, hash); update_sd( &ctx.simd, (const BitSequence *)hash,512); final_sd( &ctx.simd, (BitSequence *)hash); #ifdef NO_AES_NI sph_echo512 (&ctx.echo, (const void*) hash, 64); sph_echo512_close(&ctx.echo, (void*) hash); #else update_echo ( &ctx.echo, (const BitSequence *) hash, 512); final_echo( &ctx.echo, (BitSequence *) hash); #endif asm volatile ("emms"); memcpy(output, hash, 32); } void qubithash_alt(void *output, const void *input) { sph_luffa512_context ctx_luffa; sph_cubehash512_context ctx_cubehash; sph_shavite512_context ctx_shavite; sph_simd512_context ctx_simd; sph_echo512_context ctx_echo; uint8_t hash[64]; sph_luffa512_init(&ctx_luffa); sph_luffa512 (&ctx_luffa, input, 80); sph_luffa512_close(&ctx_luffa, (void*) hash); sph_cubehash512_init(&ctx_cubehash); sph_cubehash512 (&ctx_cubehash, (const void*) hash, 64); sph_cubehash512_close(&ctx_cubehash, (void*) hash); sph_shavite512_init(&ctx_shavite); sph_shavite512 (&ctx_shavite, (const void*) hash, 64); sph_shavite512_close(&ctx_shavite, (void*) hash); sph_simd512_init(&ctx_simd); sph_simd512 (&ctx_simd, (const void*) hash, 64); sph_simd512_close(&ctx_simd, (void*) hash); sph_echo512_init(&ctx_echo); sph_echo512 (&ctx_echo, (const void*) hash, 64); sph_echo512_close(&ctx_echo, (void*) hash); memcpy(output, hash, 32); } int scanhash_qubit(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done) { uint32_t endiandata[20] __attribute__((aligned(64))); uint32_t hash64[8] __attribute__((aligned(32))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; uint64_t htmax[] = { 0, 0xF, 0xFF, 0xFFF, 0xFFFF, 0x10000000 }; uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00, 0xFFFFF000, 0xFFFF0000, 0 }; // we need bigendian data... swab32_array( endiandata, pdata, 20 ); #ifdef DEBUG_ALGO printf("[%d] Htarg=%X\n", thr_id, Htarg); #endif for ( int m=0; m < 6; m++ ) { if ( Htarg <= htmax[m] ) { uint32_t mask = masks[m]; do { pdata[19] = ++n; be32enc(&endiandata[19], n); qubithash(hash64, endiandata); #ifndef DEBUG_ALGO if (!(hash64[7] & mask)) { if ( fulltest(hash64, ptarget) ) { *hashes_done = n - first_nonce + 1; return true; } // else // { // applog(LOG_INFO, "Result does not validate on CPU!"); // } } #else if (!(n % 0x1000) && !thr_id) printf("."); if (!(hash64[7] & mask)) { printf("[%d]",thr_id); if (fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } #endif } while ( n < max_nonce && !work_restart[thr_id].restart ); // see blake.c if else to understand the loop on htmax => mask break; } } *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } bool register_qubit_algo( algo_gate_t* gate ) { gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT; init_qubit_ctx(); gate->scanhash = (void*)&scanhash_qubit; gate->hash = (void*)&qubithash; gate->hash_alt = (void*)&qubithash_alt; return true; };