/** * A simple implementation of Blake2b's internal permutation * in the form of a sponge. * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "sponge.h" #include "lyra2.h" /** * Initializes the Sponge State. The first 512 bits are set to zeros and the remainder * receive Blake2b's IV as per Blake2b's specification. Note: Even though sponges * typically have their internal state initialized with zeros, Blake2b's G function * has a fixed point: if the internal state and message are both filled with zeros. the * resulting permutation will always be a block filled with zeros; this happens because * Blake2b does not use the constants originally employed in Blake2 inside its G function, * relying on the IV for avoiding possible fixed points. * * @param state The 1024-bit array to be initialized */ void initState(uint64_t state[/*16*/]) { #ifdef __AVX2__ (*(__m256i*)(&state[0])) = _mm256_setzero_si256(); (*(__m256i*)(&state[4])) = _mm256_setzero_si256(); (*(__m256i*)(&state[8])) = _mm256_set_epi64x( blake2b_IV[3], blake2b_IV[2], blake2b_IV[1], blake2b_IV[0] ); (*(__m256i*)(&state[12])) = _mm256_set_epi64x(blake2b_IV[7], blake2b_IV[6], blake2b_IV[5], blake2b_IV[4] ); //AVX is around the same number of instructions as unnoptimized //#elif defined __AVX__ #else //First 512 bis are zeros memset(state, 0, 64); //Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV state[8] = blake2b_IV[0]; state[9] = blake2b_IV[1]; state[10] = blake2b_IV[2]; state[11] = blake2b_IV[3]; state[12] = blake2b_IV[4]; state[13] = blake2b_IV[5]; state[14] = blake2b_IV[6]; state[15] = blake2b_IV[7]; #endif } /** * Execute Blake2b's G function, with all 12 rounds. * * @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function */ __inline static void blake2bLyra( uint64_t *v ) { #if defined __AVX2__ LYRA_INIT_AVX2; // defines local a[4] LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_ROUND_AVX2; LYRA_CLOSE_AVX2; #elif defined __AVX__ LYRA_INIT_AVX; // defines locals a0[4], a1[4] LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_ROUND_AVX; LYRA_CLOSE_AVX; #else ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); ROUND_LYRA(0); #endif } /** * Executes a reduced version of Blake2b's G function with only one round * @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function */ __inline static void reducedBlake2bLyra(uint64_t *v) { #if defined __AVX2__ LYRA_INIT_AVX2; // defines local a[4] LYRA_ROUND_AVX2; LYRA_CLOSE_AVX2; #elif defined __AVX__ LYRA_INIT_AVX; // defines locals a0[4], a1[4] LYRA_ROUND_AVX; LYRA_CLOSE_AVX; #else ROUND_LYRA(0); #endif } /** * Performs a squeeze operation, using Blake2b's G function as the * internal permutation * * @param state The current state of the sponge * @param out Array that will receive the data squeezed * @param len The number of bytes to be squeezed into the "out" array */ void squeeze(uint64_t *state, byte *out, unsigned int len) { int fullBlocks = len / BLOCK_LEN_BYTES; byte *ptr = out; int i; //Squeezes full blocks for (i = 0; i < fullBlocks; i++) { memcpy(ptr, state, BLOCK_LEN_BYTES); blake2bLyra(state); ptr += BLOCK_LEN_BYTES; } //Squeezes remaining bytes memcpy(ptr, state, (len % BLOCK_LEN_BYTES)); } /** * Performs an absorb operation for a single block (BLOCK_LEN_INT64 words * of type uint64_t), using Blake2b's G function as the internal permutation * * @param state The current state of the sponge * @param in The block to be absorbed (BLOCK_LEN_INT64 words) */ void absorbBlock(uint64_t *state, const uint64_t *in) { //XORs the first BLOCK_LEN_INT64 words of "in" with the current state #if defined __AVX2__ __m256i state_v[3], in_v[3]; // only state is guaranteed aligned 256 state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); in_v [2] = _mm256_loadu_si256( (__m256i*)(&in[8]) ); _mm256_store_si256( (__m256i*)&state[0], _mm256_xor_si256( state_v[0], in_v[0] ) ); _mm256_store_si256( (__m256i*)&state[4], _mm256_xor_si256( state_v[1], in_v[1] ) ); _mm256_store_si256( (__m256i*)&state[8], _mm256_xor_si256( state_v[2], in_v[2] ) ); #elif defined __AVX__ __m128i state_v[6], in_v[6]; state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) ); in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) ); in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) ); in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) ); in_v[4] = _mm_load_si128( (__m128i*)(&in[8]) ); in_v[5] = _mm_load_si128( (__m128i*)(&in[10]) ); _mm_store_si128( (__m128i*)(&state[0]), _mm_xor_si128( state_v[0], in_v[0] ) ); _mm_store_si128( (__m128i*)(&state[2]), _mm_xor_si128( state_v[1], in_v[1] ) ); _mm_store_si128( (__m128i*)(&state[4]), _mm_xor_si128( state_v[2], in_v[2] ) ); _mm_store_si128( (__m128i*)(&state[6]), _mm_xor_si128( state_v[3], in_v[3] ) ); _mm_store_si128( (__m128i*)(&state[8]), _mm_xor_si128( state_v[4], in_v[4] ) ); _mm_store_si128( (__m128i*)(&state[10]), _mm_xor_si128( state_v[5], in_v[5] ) ); #else state[0] ^= in[0]; state[1] ^= in[1]; state[2] ^= in[2]; state[3] ^= in[3]; state[4] ^= in[4]; state[5] ^= in[5]; state[6] ^= in[6]; state[7] ^= in[7]; state[8] ^= in[8]; state[9] ^= in[9]; state[10] ^= in[10]; state[11] ^= in[11]; #endif //Applies the transformation f to the sponge's state blake2bLyra(state); } /** * Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64 * words of type uint64_t), using Blake2b's G function as the internal permutation * * @param state The current state of the sponge * @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words) */ void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) { //XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state #if defined __AVX2__ __m256i state_v[2], in_v[2]; state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) ); _mm256_store_si256( (__m256i*)(&state[0]), _mm256_xor_si256( state_v[0], in_v[0] ) ); _mm256_store_si256( (__m256i*)(&state[4]), _mm256_xor_si256( state_v[1], in_v[1] ) ); #elif defined __AVX__ __m128i state_v[4], in_v[4]; state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) ); in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) ); in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) ); in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) ); _mm_store_si128( (__m128i*)(&state[0]), _mm_xor_si128( state_v[0], in_v[0] ) ); _mm_store_si128( (__m128i*)(&state[2]), _mm_xor_si128( state_v[1], in_v[1] ) ); _mm_store_si128( (__m128i*)(&state[4]), _mm_xor_si128( state_v[2], in_v[2] ) ); _mm_store_si128( (__m128i*)(&state[6]), _mm_xor_si128( state_v[3], in_v[3] ) ); #else state[0] ^= in[0]; state[1] ^= in[1]; state[2] ^= in[2]; state[3] ^= in[3]; state[4] ^= in[4]; state[5] ^= in[5]; state[6] ^= in[6]; state[7] ^= in[7]; #endif //Applies the transformation f to the sponge's state blake2bLyra(state); } /** * Performs a reduced squeeze operation for a single row, from the highest to * the lowest index, using the reduced-round Blake2b's G function as the * internal permutation * * @param state The current state of the sponge * @param rowOut Row to receive the data squeezed */ void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols) { uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1] unsigned int i; //M[row][C-1-col] = H.reduced_squeeze() for (i = 0; i < nCols; i++) { #if defined __AVX2__ _mm256_storeu_si256( (__m256i*)&ptrWord[0], _mm256_load_si256( (__m256i*)(&state[0]) ) ); _mm256_storeu_si256( (__m256i*)&ptrWord[4], _mm256_load_si256( (__m256i*)(&state[4]) ) ); _mm256_storeu_si256( (__m256i*)&ptrWord[8], _mm256_load_si256( (__m256i*)(&state[8]) ) ); #elif defined __AVX__ _mm_store_si128( (__m128i*)(&ptrWord[0]), _mm_load_si128( (__m128i*)(&state[0]) ) ); _mm_store_si128( (__m128i*)(&ptrWord[2]), _mm_load_si128( (__m128i*)(&state[2]) ) ); _mm_store_si128( (__m128i*)(&ptrWord[4]), _mm_load_si128( (__m128i*)(&state[4]) ) ); _mm_store_si128( (__m128i*)(&ptrWord[6]), _mm_load_si128( (__m128i*)(&state[6]) ) ); _mm_store_si128( (__m128i*)(&ptrWord[8]), _mm_load_si128( (__m128i*)(&state[8]) ) ); _mm_store_si128( (__m128i*)(&ptrWord[10]), _mm_load_si128( (__m128i*)(&state[10]) ) ); #else ptrWord[0] = state[0]; ptrWord[1] = state[1]; ptrWord[2] = state[2]; ptrWord[3] = state[3]; ptrWord[4] = state[4]; ptrWord[5] = state[5]; ptrWord[6] = state[6]; ptrWord[7] = state[7]; ptrWord[8] = state[8]; ptrWord[9] = state[9]; ptrWord[10] = state[10]; ptrWord[11] = state[11]; #endif //Goes to next block (column) that will receive the squeezed data ptrWord -= BLOCK_LEN_INT64; //Applies the reduced-round transformation f to the sponge's state reducedBlake2bLyra(state); } } /** * Performs a reduced duplex operation for a single row, from the highest to * the lowest index, using the reduced-round Blake2b's G function as the * internal permutation * * @param state The current state of the sponge * @param rowIn Row to feed the sponge * @param rowOut Row to receive the sponge's output */ void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols) { uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row unsigned int i; for (i = 0; i < nCols; i++) { //Absorbing "M[prev][col]" #if defined __AVX2__ __m256i state_v[3], in_v[3]; state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) ); _mm256_store_si256( (__m256i*)(&state[0]), _mm256_xor_si256( state_v[0], in_v[0] ) ); _mm256_store_si256( (__m256i*)(&state[4]), _mm256_xor_si256( state_v[1], in_v[1] ) ); _mm256_store_si256( (__m256i*)(&state[8]), _mm256_xor_si256( state_v[2], in_v[2] ) ); #elif defined __AVX__ __m128i state_v[6], in_v[6]; state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) ); in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) ); in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) ); in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) ); in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) ); in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) ); _mm_store_si128( (__m128i*)(&state[0]), _mm_xor_si128( state_v[0], in_v[0] ) ); _mm_store_si128( (__m128i*)(&state[2]), _mm_xor_si128( state_v[1], in_v[1] ) ); _mm_store_si128( (__m128i*)(&state[4]), _mm_xor_si128( state_v[2], in_v[2] ) ); _mm_store_si128( (__m128i*)(&state[6]), _mm_xor_si128( state_v[3], in_v[3] ) ); _mm_store_si128( (__m128i*)(&state[8]), _mm_xor_si128( state_v[4], in_v[4] ) ); _mm_store_si128( (__m128i*)(&state[10]), _mm_xor_si128( state_v[5], in_v[5] ) ); #else state[0] ^= (ptrWordIn[0]); state[1] ^= (ptrWordIn[1]); state[2] ^= (ptrWordIn[2]); state[3] ^= (ptrWordIn[3]); state[4] ^= (ptrWordIn[4]); state[5] ^= (ptrWordIn[5]); state[6] ^= (ptrWordIn[6]); state[7] ^= (ptrWordIn[7]); state[8] ^= (ptrWordIn[8]); state[9] ^= (ptrWordIn[9]); state[10] ^= (ptrWordIn[10]); state[11] ^= (ptrWordIn[11]); #endif //Applies the reduced-round transformation f to the sponge's state reducedBlake2bLyra(state); //M[row][C-1-col] = M[prev][col] XOR rand #if defined __AVX2__ state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]), _mm256_xor_si256( state_v[0], in_v[0] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]), _mm256_xor_si256( state_v[1], in_v[1] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]), _mm256_xor_si256( state_v[2], in_v[2] ) ); #elif defined __AVX__ state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[0]), _mm_xor_si128( state_v[0], in_v[0] ) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[2]), _mm_xor_si128( state_v[1], in_v[1] ) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[4]), _mm_xor_si128( state_v[2], in_v[2] ) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[6]), _mm_xor_si128( state_v[3], in_v[3] ) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[8]), _mm_xor_si128( state_v[4], in_v[4] ) ); _mm_storeu_si128( (__m128i*)(&ptrWordOut[10]), _mm_xor_si128( state_v[5], in_v[5] ) ); #else ptrWordOut[0] = ptrWordIn[0] ^ state[0]; ptrWordOut[1] = ptrWordIn[1] ^ state[1]; ptrWordOut[2] = ptrWordIn[2] ^ state[2]; ptrWordOut[3] = ptrWordIn[3] ^ state[3]; ptrWordOut[4] = ptrWordIn[4] ^ state[4]; ptrWordOut[5] = ptrWordIn[5] ^ state[5]; ptrWordOut[6] = ptrWordIn[6] ^ state[6]; ptrWordOut[7] = ptrWordIn[7] ^ state[7]; ptrWordOut[8] = ptrWordIn[8] ^ state[8]; ptrWordOut[9] = ptrWordIn[9] ^ state[9]; ptrWordOut[10] = ptrWordIn[10] ^ state[10]; ptrWordOut[11] = ptrWordIn[11] ^ state[11]; #endif //Input: next column (i.e., next block in sequence) ptrWordIn += BLOCK_LEN_INT64; //Output: goes to previous column ptrWordOut -= BLOCK_LEN_INT64; } } /** * Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e., * the wordwise addition of two columns, ignoring carries between words). The * output of this operation, "rand", is then used to make * "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and * "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit * rotation to the left and N_COLS is a system parameter. * * @param state The current state of the sponge * @param rowIn Row used only as input * @param rowInOut Row used as input and to receive output after rotation * @param rowOut Row receiving the output * */ void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols) { uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row* uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row unsigned int i; for (i = 0; i < nCols; i++) { //Absorbing "M[prev] [+] M[row*]" #if defined __AVX2__ __m256i state_v[3], in_v[3], inout_v[3]; state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) ); inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) ); inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) ); inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) ); _mm256_store_si256( (__m256i*)(&state[0]), _mm256_xor_si256( state_v[0], _mm256_add_epi64( in_v[0], inout_v[0] ) ) ); _mm256_store_si256( (__m256i*)(&state[4]), _mm256_xor_si256( state_v[1], _mm256_add_epi64( in_v[1], inout_v[1] ) ) ); _mm256_store_si256( (__m256i*)(&state[8]), _mm256_xor_si256( state_v[2], _mm256_add_epi64( in_v[2], inout_v[2] ) ) ); #elif defined __AVX__ __m128i state_v[6], in_v[6], inout_v[6]; state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) ); inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) ); inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) ); inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) ); inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) ); inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) ); in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) ); in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) ); in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) ); in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) ); in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) ); in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) ); _mm_store_si128( (__m128i*)(&state[0]), _mm_xor_si128( state_v[0], _mm_add_epi64( in_v[0], inout_v[0] ) ) ); _mm_store_si128( (__m128i*)(&state[2]), _mm_xor_si128( state_v[1], _mm_add_epi64( in_v[1], inout_v[1] ) ) ); _mm_store_si128( (__m128i*)(&state[4]), _mm_xor_si128( state_v[2], _mm_add_epi64( in_v[2], inout_v[2] ) ) ); _mm_store_si128( (__m128i*)(&state[6]), _mm_xor_si128( state_v[3], _mm_add_epi64( in_v[3], inout_v[3] ) ) ); _mm_store_si128( (__m128i*)(&state[8]), _mm_xor_si128( state_v[4], _mm_add_epi64( in_v[4], inout_v[4] ) ) ); _mm_store_si128( (__m128i*)(&state[10]), _mm_xor_si128( state_v[5], _mm_add_epi64( in_v[5], inout_v[5] ) ) ); #else state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]); state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]); state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]); state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]); state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]); state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]); state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]); state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]); state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]); state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]); state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]); state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]); #endif //Applies the reduced-round transformation f to the sponge's state reducedBlake2bLyra(state); //M[row][col] = M[prev][col] XOR rand #if defined __AVX2__ state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]), _mm256_xor_si256( state_v[0], in_v[0] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]), _mm256_xor_si256( state_v[1], in_v[1] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]), _mm256_xor_si256( state_v[2], in_v[2] ) ); #elif defined __AVX__ state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); _mm_store_si128( (__m128i*)(&ptrWordOut[0]), _mm_xor_si128( state_v[0], in_v[0] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[2]), _mm_xor_si128( state_v[1], in_v[1] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[4]), _mm_xor_si128( state_v[2], in_v[2] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[6]), _mm_xor_si128( state_v[3], in_v[3] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[8]), _mm_xor_si128( state_v[4], in_v[4] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[10]), _mm_xor_si128( state_v[5], in_v[5] ) ); #else ptrWordOut[0] = ptrWordIn[0] ^ state[0]; ptrWordOut[1] = ptrWordIn[1] ^ state[1]; ptrWordOut[2] = ptrWordIn[2] ^ state[2]; ptrWordOut[3] = ptrWordIn[3] ^ state[3]; ptrWordOut[4] = ptrWordIn[4] ^ state[4]; ptrWordOut[5] = ptrWordIn[5] ^ state[5]; ptrWordOut[6] = ptrWordIn[6] ^ state[6]; ptrWordOut[7] = ptrWordIn[7] ^ state[7]; ptrWordOut[8] = ptrWordIn[8] ^ state[8]; ptrWordOut[9] = ptrWordIn[9] ^ state[9]; ptrWordOut[10] = ptrWordIn[10] ^ state[10]; ptrWordOut[11] = ptrWordIn[11] ^ state[11]; #endif //M[row*][col] = M[row*][col] XOR rotW(rand) ptrWordInOut[0] ^= state[11]; ptrWordInOut[1] ^= state[0]; ptrWordInOut[2] ^= state[1]; ptrWordInOut[3] ^= state[2]; ptrWordInOut[4] ^= state[3]; ptrWordInOut[5] ^= state[4]; ptrWordInOut[6] ^= state[5]; ptrWordInOut[7] ^= state[6]; ptrWordInOut[8] ^= state[7]; ptrWordInOut[9] ^= state[8]; ptrWordInOut[10] ^= state[9]; ptrWordInOut[11] ^= state[10]; //Inputs: next column (i.e., next block in sequence) ptrWordInOut += BLOCK_LEN_INT64; ptrWordIn += BLOCK_LEN_INT64; //Output: goes to previous column ptrWordOut -= BLOCK_LEN_INT64; } } /** * Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e., * the wordwise addition of two columns, ignoring carries between words). The * output of this operation, "rand", is then used to make * "M[rowOut][col] = M[rowOut][col] XOR rand" and * "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit * rotation to the left. * * @param state The current state of the sponge * @param rowIn Row used only as input * @param rowInOut Row used as input and to receive output after rotation * @param rowOut Row receiving the output * */ void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols) { uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row* uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row unsigned int i; for (i = 0; i < nCols; i++) { //Absorbing "M[prev] [+] M[row*]" #if defined __AVX2__ __m256i state_v[3], in_v[3], inout_v[3]; #define out_v in_v // reuse register in next code block state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) ); inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) ); inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) ); inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) ); _mm256_store_si256( (__m256i*)(&state[0]), _mm256_xor_si256( state_v[0], _mm256_add_epi64( in_v[0], inout_v[0] ) ) ); _mm256_store_si256( (__m256i*)(&state[4]), _mm256_xor_si256( state_v[1], _mm256_add_epi64( in_v[1], inout_v[1] ) ) ); _mm256_store_si256( (__m256i*)(&state[8]), _mm256_xor_si256( state_v[2], _mm256_add_epi64( in_v[2], inout_v[2] ) ) ); #elif defined __AVX__ __m128i state_v[6], in_v[6], inout_v[6]; #define out_v in_v // reuse register in next code block state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) ); inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) ); inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) ); inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) ); inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) ); inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) ); in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) ); in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) ); in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) ); in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) ); in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) ); in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) ); _mm_store_si128( (__m128i*)(&state[0]), _mm_xor_si128( state_v[0], _mm_add_epi64( in_v[0], inout_v[0] ) ) ); _mm_store_si128( (__m128i*)(&state[2]), _mm_xor_si128( state_v[1], _mm_add_epi64( in_v[1], inout_v[1] ) ) ); _mm_store_si128( (__m128i*)(&state[4]), _mm_xor_si128( state_v[2], _mm_add_epi64( in_v[2], inout_v[2] ) ) ); _mm_store_si128( (__m128i*)(&state[6]), _mm_xor_si128( state_v[3], _mm_add_epi64( in_v[3], inout_v[3] ) ) ); _mm_store_si128( (__m128i*)(&state[8]), _mm_xor_si128( state_v[4], _mm_add_epi64( in_v[4], inout_v[4] ) ) ); _mm_store_si128( (__m128i*)(&state[10]), _mm_xor_si128( state_v[5], _mm_add_epi64( in_v[5], inout_v[5] ) ) ); #else state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]); state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]); state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]); state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]); state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]); state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]); state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]); state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]); state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]); state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]); state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]); state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]); #endif //Applies the reduced-round transformation f to the sponge's state reducedBlake2bLyra(state); //M[rowOut][col] = M[rowOut][col] XOR rand #if defined __AVX2__ state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) ); out_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[0]) ); state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) ); out_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[4]) ); state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) ); out_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[8]) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]), _mm256_xor_si256( state_v[0], out_v[0] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]), _mm256_xor_si256( state_v[1], out_v[1] ) ); _mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]), _mm256_xor_si256( state_v[2], out_v[2] ) ); #elif defined __AVX__ state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) ); state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) ); state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) ); state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) ); state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) ); state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) ); out_v[0] = _mm_load_si128( (__m128i*)(&ptrWordOut[0]) ); out_v[1] = _mm_load_si128( (__m128i*)(&ptrWordOut[2]) ); out_v[2] = _mm_load_si128( (__m128i*)(&ptrWordOut[4]) ); out_v[3] = _mm_load_si128( (__m128i*)(&ptrWordOut[6]) ); out_v[4] = _mm_load_si128( (__m128i*)(&ptrWordOut[8]) ); out_v[5] = _mm_load_si128( (__m128i*)(&ptrWordOut[10]) ); _mm_store_si128( (__m128i*)(&ptrWordOut[0]), _mm_xor_si128( state_v[0], out_v[0] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[2]), _mm_xor_si128( state_v[1], out_v[1] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[4]), _mm_xor_si128( state_v[2], out_v[2] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[6]), _mm_xor_si128( state_v[3], out_v[3] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[8]), _mm_xor_si128( state_v[4], out_v[4] ) ); _mm_store_si128( (__m128i*)(&ptrWordOut[10]), _mm_xor_si128( state_v[5], out_v[5] ) ); #else ptrWordOut[0] ^= state[0]; ptrWordOut[1] ^= state[1]; ptrWordOut[2] ^= state[2]; ptrWordOut[3] ^= state[3]; ptrWordOut[4] ^= state[4]; ptrWordOut[5] ^= state[5]; ptrWordOut[6] ^= state[6]; ptrWordOut[7] ^= state[7]; ptrWordOut[8] ^= state[8]; ptrWordOut[9] ^= state[9]; ptrWordOut[10] ^= state[10]; ptrWordOut[11] ^= state[11]; #endif //M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand) ptrWordInOut[0] ^= state[11]; ptrWordInOut[1] ^= state[0]; ptrWordInOut[2] ^= state[1]; ptrWordInOut[3] ^= state[2]; ptrWordInOut[4] ^= state[3]; ptrWordInOut[5] ^= state[4]; ptrWordInOut[6] ^= state[5]; ptrWordInOut[7] ^= state[6]; ptrWordInOut[8] ^= state[7]; ptrWordInOut[9] ^= state[8]; ptrWordInOut[10] ^= state[9]; ptrWordInOut[11] ^= state[10]; //Goes to next block ptrWordOut += BLOCK_LEN_INT64; ptrWordInOut += BLOCK_LEN_INT64; ptrWordIn += BLOCK_LEN_INT64; } } /** * Prints an array of unsigned chars */ void printArray(unsigned char *array, unsigned int size, char *name) { unsigned int i; printf("%s: ", name); for (i = 0; i < size; i++) { printf("%2x|", array[i]); } printf("\n"); } ////////////////////////////////////////////////////////////////////////////////////////////////