/* * luffa_for_sse2.c * Version 2.0 (Sep 15th 2009) * * Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved. * * Hitachi, Ltd. is the owner of this software and hereby grant * the U.S. Government and any interested party the right to use * this software for the purposes of the SHA-3 evaluation process, * notwithstanding that this software is copyrighted. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "simd-utils.h" #include "luffa_for_sse2.h" #define cns(i) ( ( (__m128i*)CNS_INIT)[i] ) #define ADD_CONSTANT( a, b, c0 ,c1 ) \ a = _mm_xor_si128( a, c0 ); \ b = _mm_xor_si128( b, c1 ); \ #if defined(__AVX512VL__) //TODO enable for AVX10_512 AVX10_256 #define MULT2( a0, a1 ) \ { \ __m128i b = _mm_xor_si128( a0, \ _mm_maskz_shuffle_epi32( 0xb, a1, 0x10 ) ); \ a0 = _mm_alignr_epi8( a1, b, 4 ); \ a1 = _mm_alignr_epi8( b, a1, 4 ); \ } #elif defined(__SSE4_1__) #define MULT2( a0, a1 ) do \ { \ __m128i b = _mm_xor_si128( a0, \ _mm_shuffle_epi32( mm128_mask_32( a1, 0xe ), 0x10 ) ); \ a0 = _mm_alignr_epi8( a1, b, 4 ); \ a1 = _mm_alignr_epi8( b, a1, 4 ); \ } while(0) #else #define MULT2( a0, a1 ) do \ { \ __m128i b = _mm_xor_si128( a0, \ _mm_shuffle_epi32( _mm_and_si128( a1, MASK ), 0x10 ) ); \ a0 = _mm_or_si128( _mm_srli_si128( b, 4 ), _mm_slli_si128( a1, 12 ) ); \ a1 = _mm_or_si128( _mm_srli_si128( a1, 4 ), _mm_slli_si128( b, 12 ) ); \ } while(0) #endif #if defined(__AVX512VL__) //TODO enable for AVX10_512 AVX10_256 #define SUBCRUMB( a0, a1, a2, a3 ) \ { \ __m128i t = a0; \ a0 = mm128_xoror( a3, a0, a1 ); \ a2 = _mm_xor_si128( a2, a3 ); \ a1 = _mm_ternarylogic_epi64( a1, a3, t, 0x87 ); /* a1 xnor (a3 & t) */ \ a3 = mm128_xorand( a2, a3, t ); \ a2 = mm128_xorand( a1, a2, a0 ); \ a1 = _mm_or_si128( a1, a3 ); \ a3 = _mm_xor_si128( a3, a2 ); \ t = _mm_xor_si128( t, a1 ); \ a2 = _mm_and_si128( a2, a1 ); \ a1 = mm128_xnor( a1, a0 ); \ a0 = t; \ } #else #define SUBCRUMB( a0, a1, a2, a3 ) \ { \ __m128i t = a0; \ a0 = _mm_or_si128( a0, a1 ); \ a2 = _mm_xor_si128( a2, a3 ); \ a1 = mm128_not( a1 ); \ a0 = _mm_xor_si128( a0, a3 ); \ a3 = _mm_and_si128( a3, t ); \ a1 = _mm_xor_si128( a1, a3 ); \ a3 = _mm_xor_si128( a3, a2 ); \ a2 = _mm_and_si128( a2, a0 ); \ a0 = mm128_not( a0 ); \ a2 = _mm_xor_si128( a2, a1 ); \ a1 = _mm_or_si128( a1, a3 ); \ t = _mm_xor_si128( t , a1 ); \ a3 = _mm_xor_si128( a3, a2 ); \ a2 = _mm_and_si128( a2, a1 ); \ a1 = _mm_xor_si128( a1, a0 ); \ a0 = t; \ } #endif #define MIXWORD( a, b ) \ b = _mm_xor_si128( a, b ); \ a = _mm_xor_si128( b, mm128_rol_32( a, 2 ) ); \ b = _mm_xor_si128( a, mm128_rol_32( b, 14 ) ); \ a = _mm_xor_si128( b, mm128_rol_32( a, 10 ) ); \ b = mm128_rol_32( b, 1 ); #define STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, c0, c1 ) \ SUBCRUMB( x0, x1, x2, x3 ); \ SUBCRUMB( x5, x6, x7, x4 ); \ MIXWORD( x0, x4 ); \ MIXWORD( x1, x5 ); \ MIXWORD( x2, x6 ); \ MIXWORD( x3, x7 ); \ ADD_CONSTANT( x0, x4, c0, c1 ); #define STEP_PART2( a0, a1, t0, t1, c0, c1 ) \ t0 = _mm_shuffle_epi32( a1, 147 ); \ a1 = _mm_unpacklo_epi32( t0, a0 ); \ t0 = _mm_unpackhi_epi32( t0, a0 ); \ t1 = _mm_shuffle_epi32( t0, 78 ); \ a0 = _mm_shuffle_epi32( a1, 78 ); \ SUBCRUMB( t1, t0, a0, a1 ); \ t0 = _mm_unpacklo_epi32( t0, t1 ); \ a1 = _mm_unpacklo_epi32( a1, a0 ); \ a0 = _mm_unpackhi_epi64( a1, t0 ); \ a1 = _mm_unpacklo_epi64( a1, t0 ); \ a1 = _mm_shuffle_epi32( a1, 57 ); \ MIXWORD( a0, a1 ); \ ADD_CONSTANT( a0, a1, c0, c1 ); #define NMLTOM768(r0,r1,r2,s0,s1,s2,s3,p0,p1,p2,q0,q1,q2,q3)\ s2 = _mm_load_si128(&r1);\ q2 = _mm_load_si128(&p1);\ r2 = _mm_shuffle_epi32(r2,216);\ p2 = _mm_shuffle_epi32(p2,216);\ r1 = _mm_unpacklo_epi32(r1,r0);\ p1 = _mm_unpacklo_epi32(p1,p0);\ s2 = _mm_unpackhi_epi32(s2,r0);\ q2 = _mm_unpackhi_epi32(q2,p0);\ s0 = _mm_load_si128(&r2);\ q0 = _mm_load_si128(&p2);\ r2 = _mm_unpacklo_epi64(r2,r1);\ p2 = _mm_unpacklo_epi64(p2,p1);\ s1 = _mm_load_si128(&s0);\ q1 = _mm_load_si128(&q0);\ s0 = _mm_unpackhi_epi64(s0,r1);\ q0 = _mm_unpackhi_epi64(q0,p1);\ r2 = _mm_shuffle_epi32(r2,225);\ p2 = _mm_shuffle_epi32(p2,225);\ r0 = _mm_load_si128(&s1);\ p0 = _mm_load_si128(&q1);\ s0 = _mm_shuffle_epi32(s0,225);\ q0 = _mm_shuffle_epi32(q0,225);\ s1 = _mm_unpacklo_epi64(s1,s2);\ q1 = _mm_unpacklo_epi64(q1,q2);\ r0 = _mm_unpackhi_epi64(r0,s2);\ p0 = _mm_unpackhi_epi64(p0,q2);\ s2 = _mm_load_si128(&r0);\ q2 = _mm_load_si128(&p0);\ s3 = _mm_load_si128(&r2);\ q3 = _mm_load_si128(&p2);\ #define MIXTON768(r0,r1,r2,r3,s0,s1,s2,p0,p1,p2,p3,q0,q1,q2)\ s0 = _mm_load_si128(&r0);\ q0 = _mm_load_si128(&p0);\ s1 = _mm_load_si128(&r2);\ q1 = _mm_load_si128(&p2);\ r0 = _mm_unpackhi_epi32(r0,r1);\ p0 = _mm_unpackhi_epi32(p0,p1);\ r2 = _mm_unpackhi_epi32(r2,r3);\ p2 = _mm_unpackhi_epi32(p2,p3);\ s0 = _mm_unpacklo_epi32(s0,r1);\ q0 = _mm_unpacklo_epi32(q0,p1);\ s1 = _mm_unpacklo_epi32(s1,r3);\ q1 = _mm_unpacklo_epi32(q1,p3);\ r1 = _mm_load_si128(&r0);\ p1 = _mm_load_si128(&p0);\ r0 = _mm_unpackhi_epi64(r0,r2);\ p0 = _mm_unpackhi_epi64(p0,p2);\ s0 = _mm_unpackhi_epi64(s0,s1);\ q0 = _mm_unpackhi_epi64(q0,q1);\ r1 = _mm_unpacklo_epi64(r1,r2);\ p1 = _mm_unpacklo_epi64(p1,p2);\ s2 = _mm_load_si128(&r0);\ q2 = _mm_load_si128(&p0);\ s1 = _mm_load_si128(&r1);\ q1 = _mm_load_si128(&p1);\ #define NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\ s1 = _mm_unpackhi_epi32( r3, r2 ); \ q1 = _mm_unpackhi_epi32( p3, p2 ); \ s3 = _mm_unpacklo_epi32( r3, r2 ); \ q3 = _mm_unpacklo_epi32( p3, p2 ); \ r3 = _mm_unpackhi_epi32( r1, r0 ); \ r1 = _mm_unpacklo_epi32( r1, r0 ); \ p3 = _mm_unpackhi_epi32( p1, p0 ); \ p1 = _mm_unpacklo_epi32( p1, p0 ); \ s0 = _mm_unpackhi_epi64( s1, r3 ); \ q0 = _mm_unpackhi_epi64( q1 ,p3 ); \ s1 = _mm_unpacklo_epi64( s1, r3 ); \ q1 = _mm_unpacklo_epi64( q1, p3 ); \ s2 = _mm_unpackhi_epi64( s3, r1 ); \ q2 = _mm_unpackhi_epi64( q3, p1 ); \ s3 = _mm_unpacklo_epi64( s3, r1 ); \ q3 = _mm_unpacklo_epi64( q3, p1 ); #define MIXTON1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\ NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3); static void rnd512( hashState_luffa *state, __m128i msg1, __m128i msg0 ); static void finalization512( hashState_luffa *state, uint32 *b ); /* initial values of chaining variables */ static const uint32 IV[40] __attribute((aligned(16))) = { 0xdbf78465,0x4eaa6fb4,0x44b051e0,0x6d251e69, 0xdef610bb,0xee058139,0x90152df4,0x6e292011, 0xde099fa3,0x70eee9a0,0xd9d2f256,0xc3b44b95, 0x746cd581,0xcf1ccf0e,0x8fc944b3,0x5d9b0557, 0xad659c05,0x04016ce5,0x5dba5781,0xf7efc89d, 0x8b264ae7,0x24aa230a,0x666d1836,0x0306194f, 0x204b1f67,0xe571f7d7,0x36d79cce,0x858075d5, 0x7cde72ce,0x14bcb808,0x57e9e923,0x35870c6a, 0xaffb4363,0xc825b7c7,0x5ec41e22,0x6c68e9be, 0x03e86cea,0xb07224cc,0x0fc688f1,0xf5df3999 }; /* Round Constants */ static const uint32 CNS_INIT[128] __attribute((aligned(16))) = { 0xb213afa5,0xfc20d9d2,0xb6de10ed,0x303994a6, 0xe028c9bf,0xe25e72c1,0x01685f3d,0xe0337818, 0xc84ebe95,0x34552e25,0x70f47aae,0xc0e65299, 0x44756f91,0xe623bb72,0x05a17cf4,0x441ba90d, 0x4e608a22,0x7ad8818f,0x0707a3d4,0x6cc33a12, 0x7e8fce32,0x5c58a4a4,0xbd09caca,0x7f34d442, 0x56d858fe,0x8438764a,0x1c1e8f51,0xdc56983e, 0x956548be,0x1e38e2e7,0xf4272b28,0x9389217f, 0x343b138f,0xbb6de032,0x707a3d45,0x1e00108f, 0xfe191be2,0x78e38b9d,0x144ae5cc,0xe5a8bce6, 0xd0ec4e3d,0xedb780c8,0xaeb28562,0x7800423d, 0x3cb226e5,0x27586719,0xfaa7ae2b,0x5274baf4, 0x2ceb4882,0xd9847356,0xbaca1589,0x8f5b7882, 0x5944a28e,0x36eda57f,0x2e48f1c1,0x26889ba7, 0xb3ad2208,0xa2c78434,0x40a46f3e,0x96e1db12, 0xa1c4c355,0x703aace7,0xb923c704,0x9a226e9d, 0x00000000,0x00000000,0x00000000,0xf0d2e9e3, 0x00000000,0x00000000,0x00000000,0x5090d577, 0x00000000,0x00000000,0x00000000,0xac11d7fa, 0x00000000,0x00000000,0x00000000,0x2d1925ab, 0x00000000,0x00000000,0x00000000,0x1bcb66f2, 0x00000000,0x00000000,0x00000000,0xb46496ac, 0x00000000,0x00000000,0x00000000,0x6f2d9bc9, 0x00000000,0x00000000,0x00000000,0xd1925ab0, 0x00000000,0x00000000,0x00000000,0x78602649, 0x00000000,0x00000000,0x00000000,0x29131ab6, 0x00000000,0x00000000,0x00000000,0x8edae952, 0x00000000,0x00000000,0x00000000,0x0fc053c3, 0x00000000,0x00000000,0x00000000,0x3b6ba548, 0x00000000,0x00000000,0x00000000,0x3f014f0c, 0x00000000,0x00000000,0x00000000,0xedae9520, 0x00000000,0x00000000,0x00000000,0xfc053c31 }; __m128i CNS128[32]; #if !defined(__SSE4_1__) __m128i MASK; #endif HashReturn init_luffa(hashState_luffa *state, int hashbitlen) { int i; state->hashbitlen = hashbitlen; #if !defined(__SSE4_1__) /* set the lower 32 bits to '1' */ MASK= _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0xffffffff); #endif /* set the 32-bit round constant values to the 128-bit data field */ for ( i=0; i<32; i++ ) CNS128[i] = _mm_load_si128( (__m128i*)&CNS_INIT[i*4] ); for ( i=0; i<10; i++ ) state->chainv[i] = _mm_load_si128( (__m128i*)&IV[i*4] ); memset(state->buffer, 0, sizeof state->buffer ); return SUCCESS; } HashReturn update_luffa( hashState_luffa *state, const BitSequence *data, size_t len ) { int i; int blocks = (int)len / 32; state-> rembytes = (int)len % 32; // full blocks for ( i = 0; i < blocks; i++ ) { rnd512( state, mm128_bswap_32( casti_m128i( data, 1 ) ), mm128_bswap_32( casti_m128i( data, 0 ) ) ); data += MSG_BLOCK_BYTE_LEN; } // 16 byte partial block exists for 80 byte len // store in buffer for transform in final for midstate to work if ( state->rembytes ) { // remaining data bytes casti_m128i( state->buffer, 0 ) = mm128_bswap_32( cast_m128i( data ) ); // padding of partial block casti_m128i( state->buffer, 1 ) = _mm_set_epi32( 0, 0, 0, 0x80000000 ); } return SUCCESS; } HashReturn final_luffa(hashState_luffa *state, BitSequence *hashval) { // transform pad block if ( state->rembytes ) { // not empty, data is in buffer rnd512( state, casti_m128i( state->buffer, 1 ), casti_m128i( state->buffer, 0 ) ); } else { // empty pad block, constant data rnd512( state, _mm_setzero_si128(), _mm_set_epi32( 0, 0, 0, 0x80000000 ) ); } finalization512(state, (uint32*) hashval); if ( state->hashbitlen > 512 ) finalization512( state, (uint32*)( hashval+128 ) ); return SUCCESS; } HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output, const BitSequence* data, size_t inlen ) { // Optimized for integrals of 16 bytes, good for 64 and 80 byte len int i; int blocks = (int)( inlen / 32 ); state->rembytes = inlen % 32; // full blocks for ( i = 0; i < blocks; i++ ) { rnd512( state, mm128_bswap_32( casti_m128i( data, 1 ) ), mm128_bswap_32( casti_m128i( data, 0 ) ) ); data += MSG_BLOCK_BYTE_LEN; } // 16 byte partial block exists for 80 byte len if ( state->rembytes ) // padding of partial block rnd512( state, mm128_mov64_128( 0x80000000 ), mm128_bswap_32( cast_m128i( data ) ) ); else // empty pad block rnd512( state, m128_zero, mm128_mov64_128( 0x80000000 ) ); finalization512( state, (uint32*) output ); if ( state->hashbitlen > 512 ) finalization512( state, (uint32*)( output+128 ) ); return SUCCESS; } int luffa_full( hashState_luffa *state, BitSequence* output, int hashbitlen, const BitSequence* data, size_t inlen ) { // Optimized for integrals of 16 bytes, good for 64 and 80 byte len int i; state->hashbitlen = hashbitlen; #if !defined(__SSE4_1__) /* set the lower 32 bits to '1' */ MASK= _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0xffffffff); #endif /* set the 32-bit round constant values to the 128-bit data field */ for ( i=0; i<32; i++ ) CNS128[i] = _mm_load_si128( (__m128i*)&CNS_INIT[i*4] ); for ( i=0; i<10; i++ ) state->chainv[i] = _mm_load_si128( (__m128i*)&IV[i*4] ); memset(state->buffer, 0, sizeof state->buffer ); // update int blocks = (int)( inlen / 32 ); state->rembytes = inlen % 32; // full blocks for ( i = 0; i < blocks; i++ ) { rnd512( state, mm128_bswap_32( casti_m128i( data, 1 ) ), mm128_bswap_32( casti_m128i( data, 0 ) ) ); data += MSG_BLOCK_BYTE_LEN; } // final // 16 byte partial block exists for 80 byte len if ( state->rembytes ) // padding of partial block rnd512( state, mm128_mov64_128( 0x80000000 ), mm128_bswap_32( cast_m128i( data ) ) ); else // empty pad block rnd512( state, m128_zero, mm128_mov64_128( 0x80000000 ) ); finalization512( state, (uint32*) output ); if ( state->hashbitlen > 512 ) finalization512( state, (uint32*)( output+128 ) ); return SUCCESS; } /***************************************************/ /* Round function */ /* state: hash context */ static void rnd512( hashState_luffa *state, __m128i msg1, __m128i msg0 ) { __m128i t0, t1; __m128i *chainv = state->chainv; __m128i x0, x1, x2, x3, x4, x5, x6, x7; t0 = mm128_xor3( chainv[0], chainv[2], chainv[4] ); t1 = mm128_xor3( chainv[1], chainv[3], chainv[5] ); t0 = mm128_xor3( t0, chainv[6], chainv[8] ); t1 = mm128_xor3( t1, chainv[7], chainv[9] ); MULT2( t0, t1 ); msg0 = _mm_shuffle_epi32( msg0, 27 ); msg1 = _mm_shuffle_epi32( msg1, 27 ); chainv[0] = _mm_xor_si128( chainv[0], t0 ); chainv[1] = _mm_xor_si128( chainv[1], t1 ); chainv[2] = _mm_xor_si128( chainv[2], t0 ); chainv[3] = _mm_xor_si128( chainv[3], t1 ); chainv[4] = _mm_xor_si128( chainv[4], t0 ); chainv[5] = _mm_xor_si128( chainv[5], t1 ); chainv[6] = _mm_xor_si128( chainv[6], t0 ); chainv[7] = _mm_xor_si128( chainv[7], t1 ); chainv[8] = _mm_xor_si128( chainv[8], t0 ); chainv[9] = _mm_xor_si128( chainv[9], t1 ); t0 = chainv[0]; t1 = chainv[1]; MULT2( chainv[0], chainv[1]); chainv[0] = _mm_xor_si128( chainv[0], chainv[2] ); chainv[1] = _mm_xor_si128( chainv[1], chainv[3] ); MULT2( chainv[2], chainv[3]); chainv[2] = _mm_xor_si128(chainv[2], chainv[4]); chainv[3] = _mm_xor_si128(chainv[3], chainv[5]); MULT2( chainv[4], chainv[5]); chainv[4] = _mm_xor_si128(chainv[4], chainv[6]); chainv[5] = _mm_xor_si128(chainv[5], chainv[7]); MULT2( chainv[6], chainv[7]); chainv[6] = _mm_xor_si128(chainv[6], chainv[8]); chainv[7] = _mm_xor_si128(chainv[7], chainv[9]); MULT2( chainv[8], chainv[9]); t0 = chainv[8] = _mm_xor_si128( chainv[8], t0 ); t1 = chainv[9] = _mm_xor_si128( chainv[9], t1 ); MULT2( chainv[8], chainv[9]); chainv[8] = _mm_xor_si128( chainv[8], chainv[6] ); chainv[9] = _mm_xor_si128( chainv[9], chainv[7] ); MULT2( chainv[6], chainv[7]); chainv[6] = _mm_xor_si128( chainv[6], chainv[4] ); chainv[7] = _mm_xor_si128( chainv[7], chainv[5] ); MULT2( chainv[4], chainv[5]); chainv[4] = _mm_xor_si128( chainv[4], chainv[2] ); chainv[5] = _mm_xor_si128( chainv[5], chainv[3] ); MULT2( chainv[2], chainv[3] ); chainv[2] = _mm_xor_si128( chainv[2], chainv[0] ); chainv[3] = _mm_xor_si128( chainv[3], chainv[1] ); MULT2( chainv[0], chainv[1] ); chainv[0] = _mm_xor_si128( _mm_xor_si128( chainv[0], t0 ), msg0 ); chainv[1] = _mm_xor_si128( _mm_xor_si128( chainv[1], t1 ), msg1 ); MULT2( msg0, msg1); chainv[2] = _mm_xor_si128( chainv[2], msg0 ); chainv[3] = _mm_xor_si128( chainv[3], msg1 ); MULT2( msg0, msg1); chainv[4] = _mm_xor_si128( chainv[4], msg0 ); chainv[5] = _mm_xor_si128( chainv[5], msg1 ); MULT2( msg0, msg1); chainv[6] = _mm_xor_si128( chainv[6], msg0 ); chainv[7] = _mm_xor_si128( chainv[7], msg1 ); MULT2( msg0, msg1); chainv[8] = _mm_xor_si128( chainv[8], msg0 ); chainv[9] = _mm_xor_si128( chainv[9], msg1 ); MULT2( msg0, msg1); chainv[3] = mm128_rol_32( chainv[3], 1 ); chainv[5] = mm128_rol_32( chainv[5], 2 ); chainv[7] = mm128_rol_32( chainv[7], 3 ); chainv[9] = mm128_rol_32( chainv[9], 4 ); NMLTOM1024( chainv[0], chainv[2], chainv[4], chainv[6], x0, x1, x2, x3, chainv[1], chainv[3], chainv[5], chainv[7], x4, x5, x6, x7 ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns( 0), cns( 1) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns( 2), cns( 3) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns( 4), cns( 5) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns( 6), cns( 7) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns( 8), cns( 9) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns(10), cns(11) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns(12), cns(13) ); STEP_PART( x0, x1, x2, x3, x4, x5, x6, x7, cns(14), cns(15) ); MIXTON1024( x0, x1, x2, x3, chainv[0], chainv[2], chainv[4], chainv[6], x4, x5, x6, x7, chainv[1], chainv[3], chainv[5], chainv[7]); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(16), cns(17) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(18), cns(19) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(20), cns(21) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(22), cns(23) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(24), cns(25) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(26), cns(27) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(28), cns(29) ); STEP_PART2( chainv[8], chainv[9], t0, t1, cns(30), cns(31) ); } /***************************************************/ /* Finalization function */ /* state: hash context */ /* b[8]: hash values */ static void finalization512( hashState_luffa *state, uint32 *b ) { uint32 hash[8] __attribute((aligned(64))); __m128i* chainv = state->chainv; __m128i t[2]; const __m128i zero = _mm_setzero_si128(); /*---- blank round with m=0 ----*/ rnd512( state, zero, zero ); t[0] = chainv[0]; t[1] = chainv[1]; t[0] = _mm_xor_si128(t[0], chainv[2]); t[1] = _mm_xor_si128(t[1], chainv[3]); t[0] = _mm_xor_si128(t[0], chainv[4]); t[1] = _mm_xor_si128(t[1], chainv[5]); t[0] = _mm_xor_si128(t[0], chainv[6]); t[1] = _mm_xor_si128(t[1], chainv[7]); t[0] = _mm_xor_si128(t[0], chainv[8]); t[1] = _mm_xor_si128(t[1], chainv[9]); t[0] = _mm_shuffle_epi32(t[0], 27); t[1] = _mm_shuffle_epi32(t[1], 27); _mm_store_si128((__m128i*)&hash[0], t[0]); _mm_store_si128((__m128i*)&hash[4], t[1]); casti_m128i( b, 0 ) = mm128_bswap_32( casti_m128i( hash, 0 ) ); casti_m128i( b, 1 ) = mm128_bswap_32( casti_m128i( hash, 1 ) ); rnd512( state, zero, zero ); t[0] = chainv[0]; t[1] = chainv[1]; t[0] = _mm_xor_si128(t[0], chainv[2]); t[1] = _mm_xor_si128(t[1], chainv[3]); t[0] = _mm_xor_si128(t[0], chainv[4]); t[1] = _mm_xor_si128(t[1], chainv[5]); t[0] = _mm_xor_si128(t[0], chainv[6]); t[1] = _mm_xor_si128(t[1], chainv[7]); t[0] = _mm_xor_si128(t[0], chainv[8]); t[1] = _mm_xor_si128(t[1], chainv[9]); t[0] = _mm_shuffle_epi32(t[0], 27); t[1] = _mm_shuffle_epi32(t[1], 27); _mm_store_si128((__m128i*)&hash[0], t[0]); _mm_store_si128((__m128i*)&hash[4], t[1]); casti_m128i( b, 2 ) = mm128_bswap_32( casti_m128i( hash, 0 ) ); casti_m128i( b, 3 ) = mm128_bswap_32( casti_m128i( hash, 1 ) ); } /***************************************************/