#include "lyra2-gate.h" #include #include "algo/blake/blake-hash-4way.h" #include "algo/keccak/keccak-hash-4way.h" #include "algo/skein/skein-hash-4way.h" #include "algo/bmw/bmw-hash-4way.h" #include "algo/cubehash/cubehash_sse2.h" #include "algo/cubehash/cube-hash-2way.h" #if 0 void lyra2rev2_8way_hash( void *state, const void *input ) { uint32_t vhash[8*8] __attribute__ ((aligned (128))); uint32_t vhashA[8*8] __attribute__ ((aligned (64))); uint32_t vhashB[8*8] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (64))); uint32_t hash2[8] __attribute__ ((aligned (64))); uint32_t hash3[8] __attribute__ ((aligned (64))); uint32_t hash4[8] __attribute__ ((aligned (64))); uint32_t hash5[8] __attribute__ ((aligned (64))); uint32_t hash6[8] __attribute__ ((aligned (64))); uint32_t hash7[8] __attribute__ ((aligned (64))); lyra2v2_8way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v2_8way_ctx, sizeof(l2v2_8way_ctx) ); blake256_8way_update( &ctx.blake, input + (64<<3), 16 ); blake256_8way_close( &ctx.blake, vhash ); rintrlv_8x32_8x64( vhashA, vhash, 256 ); keccak256_8way_update( &ctx.keccak, vhashA, 32 ); keccak256_8way_close( &ctx.keccak, vhash ); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 ); cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 ); cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 ); cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 ); cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 ); cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 ); cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 ); cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 ); // cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 ); // cube_4way_init( &ctx.cube, 256, 16, 32 ); // cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 ); // // dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 ); // dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); skein256_8way_update( &ctx.skein, vhash, 32 ); skein256_8way_close( &ctx.skein, vhash ); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 ); cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 ); cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 ); cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 ); cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 ); cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 ); cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 ); cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 ); // cube_4way_init( &ctx.cube, 256, 16, 32 ); // cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 ); // cube_4way_init( &ctx.cube, 256, 16, 32 ); // cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 ); // // dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 ); // dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 ); intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); bmw256_8way_update( &ctx.bmw, vhash, 32 ); bmw256_8way_close( &ctx.bmw, state ); } #endif #if defined (LYRA2REV2_8WAY) typedef struct { blake256_8way_context blake; keccak256_8way_context keccak; cubehashParam cube; skein256_8way_context skein; bmw256_8way_context bmw; } lyra2v2_8way_ctx_holder __attribute__ ((aligned (64))); static lyra2v2_8way_ctx_holder l2v2_8way_ctx; bool init_lyra2rev2_8way_ctx() { keccak256_8way_init( &l2v2_8way_ctx.keccak ); cubehashInit( &l2v2_8way_ctx.cube, 256, 16, 32 ); skein256_8way_init( &l2v2_8way_ctx.skein ); bmw256_8way_init( &l2v2_8way_ctx.bmw ); return true; } void lyra2rev2_8way_hash( void *state, const void *input ) { uint32_t vhash[8*8] __attribute__ ((aligned (128))); uint32_t vhashA[8*8] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (64))); uint32_t hash2[8] __attribute__ ((aligned (64))); uint32_t hash3[8] __attribute__ ((aligned (64))); uint32_t hash4[8] __attribute__ ((aligned (64))); uint32_t hash5[8] __attribute__ ((aligned (64))); uint32_t hash6[8] __attribute__ ((aligned (64))); uint32_t hash7[8] __attribute__ ((aligned (64))); lyra2v2_8way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v2_8way_ctx, sizeof(l2v2_8way_ctx) ); blake256_8way_update( &ctx.blake, input + (64<<3), 16 ); blake256_8way_close( &ctx.blake, vhash ); rintrlv_8x32_8x64( vhashA, vhash, 256 ); keccak256_8way_update( &ctx.keccak, vhashA, 32 ); keccak256_8way_close( &ctx.keccak, vhash ); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 ); cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 ); cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 ); cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 ); cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 ); cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 ); cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 ); cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); skein256_8way_update( &ctx.skein, vhash, 32 ); skein256_8way_close( &ctx.skein, vhash ); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 ); cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 ); cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 ); cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 ); cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 ); cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 ); cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 ); cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 ); intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); bmw256_8way_update( &ctx.bmw, vhash, 32 ); bmw256_8way_close( &ctx.bmw, state ); } int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*8] __attribute__ ((aligned (128))); uint32_t vdata[20*8] __attribute__ ((aligned (64))); uint32_t *hashd7 = &hash[7*8]; uint32_t lane_hash[8] __attribute__ ((aligned (32))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 8; uint32_t n = first_nonce; const uint32_t targ32 = ptarget[7]; __m256i *noncev = (__m256i*)vdata + 19; const int thr_id = mythr->id; const bool bench = opt_benchmark; if ( bench ) ptarget[7] = 0x0000ff; mm256_bswap32_intrlv80_8x32( vdata, pdata ); *noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ); blake256_8way_init( &l2v2_8way_ctx.blake ); blake256_8way_update( &l2v2_8way_ctx.blake, vdata, 64 ); do { lyra2rev2_8way_hash( hash, vdata ); pdata[19] = n; for ( int lane = 0; lane < 8; lane++ ) if ( unlikely( hashd7[lane] <= targ32 ) ) { extr_lane_8x32( lane_hash, hash, lane, 256 ); if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = bswap_32( n + lane ); submit_lane_solution( work, lane_hash, mythr, lane ); } } *noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) ); n += 8; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined (LYRA2REV2_4WAY) typedef struct { blake256_4way_context blake; keccak256_4way_context keccak; cubehashParam cube; skein256_4way_context skein; bmw256_4way_context bmw; } lyra2v2_4way_ctx_holder; static lyra2v2_4way_ctx_holder l2v2_4way_ctx; bool init_lyra2rev2_4way_ctx() { keccak256_4way_init( &l2v2_4way_ctx.keccak ); cubehashInit( &l2v2_4way_ctx.cube, 256, 16, 32 ); skein256_4way_init( &l2v2_4way_ctx.skein ); bmw256_4way_init( &l2v2_4way_ctx.bmw ); return true; } void lyra2rev2_4way_hash( void *state, const void *input ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t vhash[8*4] __attribute__ ((aligned (64))); uint64_t vhash64[4*4] __attribute__ ((aligned (64))); lyra2v2_4way_ctx_holder ctx __attribute__ ((aligned (64))); memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) ); blake256_4way_update( &ctx.blake, input + (64<<2), 16 ); blake256_4way_close( &ctx.blake, vhash ); rintrlv_4x32_4x64( vhash64, vhash, 256 ); keccak256_4way_update( &ctx.keccak, vhash64, 32 ); keccak256_4way_close( &ctx.keccak, vhash64 ); dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 ); LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 ); intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 ); skein256_4way_update( &ctx.skein, vhash64, 32 ); skein256_4way_close( &ctx.skein, vhash64 ); dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 ); cubehashInit( &ctx.cube, 256, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 ); intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 ); bmw256_4way_update( &ctx.bmw, vhash, 32 ); bmw256_4way_close( &ctx.bmw, state ); } int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*4] __attribute__ ((aligned (64))); uint32_t vdata[20*4] __attribute__ ((aligned (64))); uint32_t *hashd7 = &(hash[7<<2]); uint32_t lane_hash[8] __attribute__ ((aligned (32))); uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; const uint32_t targ32 = ptarget[7]; __m128i *noncev = (__m128i*)vdata + 19; int thr_id = mythr->id; if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff; mm128_bswap32_intrlv80_4x32( vdata, pdata ); blake256_4way_init( &l2v2_4way_ctx.blake ); blake256_4way_update( &l2v2_4way_ctx.blake, vdata, 64 ); do { *noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) ); lyra2rev2_4way_hash( hash, vdata ); for ( int lane = 0; lane < 4; lane++ ) if ( hashd7[lane] <= targ32 ) { extr_lane_4x32( lane_hash, hash, lane, 256 ); if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) { pdata[19] = n + lane; submit_lane_solution( work, lane_hash, mythr, lane ); } } n += 4; } while ( (n < last_nonce) && !work_restart[thr_id].restart); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif