/* groestl-intr-aes.h Aug 2011 * * Groestl implementation with intrinsics using ssse3, sse4.1, and aes * instructions. * Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz * * This code is placed in the public domain */ #if !defined(GROESTL512_INTR_4WAY_H__) #define GROESTL512_INTR_4WAY_H__ 1 #include "groestl512-hash-4way.h" #if defined(__VAES__) /* global constants */ __m512i ROUND_CONST_Lx; //__m128i ROUND_CONST_L0[ROUNDS512]; //__m128i ROUND_CONST_L7[ROUNDS512]; __m512i ROUND_CONST_P[ROUNDS1024]; __m512i ROUND_CONST_Q[ROUNDS1024]; __m512i TRANSP_MASK; __m512i SUBSH_MASK[8]; __m512i ALL_1B; __m512i ALL_FF; #define tos(a) #a #define tostr(a) tos(a) /* xmm[i] will be multiplied by 2 * xmm[j] will be lost * xmm[k] has to be all 0x1b */ #define MUL2(i, j, k){\ j = _mm512_xor_si512(j, j);\ j = _mm512_movm_epi8( _mm512_cmpgt_epi8_mask(j, i) );\ i = _mm512_add_epi8(i, i);\ j = _mm512_and_si512(j, k);\ i = _mm512_xor_si512(i, j);\ } /**/ /* Yet another implementation of MixBytes. This time we use the formulae (3) from the paper "Byte Slicing Groestl". Input: a0, ..., a7 Output: b0, ..., b7 = MixBytes(a0,...,a7). but we use the relations: t_i = a_i + a_{i+3} x_i = t_i + t_{i+3} y_i = t_i + t+{i+2} + a_{i+6} z_i = 2*x_i w_i = z_i + y_{i+4} v_i = 2*w_i b_i = v_{i+3} + y_{i+4} We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there and then adding v_i computed in the meantime in registers xmm0..xmm7. We almost fit into 16 registers, need only 3 spills to memory. This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b. K. Matusiewicz, 2011/05/29 */ #define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* t_i = a_i + a_{i+1} */\ b6 = a0;\ b7 = a1;\ a0 = _mm512_xor_si512(a0, a1);\ b0 = a2;\ a1 = _mm512_xor_si512(a1, a2);\ b1 = a3;\ a2 = _mm512_xor_si512(a2, a3);\ b2 = a4;\ a3 = _mm512_xor_si512(a3, a4);\ b3 = a5;\ a4 = _mm512_xor_si512(a4, a5);\ b4 = a6;\ a5 = _mm512_xor_si512(a5, a6);\ b5 = a7;\ a6 = _mm512_xor_si512(a6, a7);\ a7 = _mm512_xor_si512(a7, b6);\ \ /* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\ b0 = _mm512_xor_si512(b0, a4);\ b6 = _mm512_xor_si512(b6, a4);\ b1 = _mm512_xor_si512(b1, a5);\ b7 = _mm512_xor_si512(b7, a5);\ b2 = _mm512_xor_si512(b2, a6);\ b0 = _mm512_xor_si512(b0, a6);\ /* spill values y_4, y_5 to memory */\ TEMP0 = b0;\ b3 = _mm512_xor_si512(b3, a7);\ b1 = _mm512_xor_si512(b1, a7);\ TEMP1 = b1;\ b4 = _mm512_xor_si512(b4, a0);\ b2 = _mm512_xor_si512(b2, a0);\ /* save values t0, t1, t2 to xmm8, xmm9 and memory */\ b0 = a0;\ b5 = _mm512_xor_si512(b5, a1);\ b3 = _mm512_xor_si512(b3, a1);\ b1 = a1;\ b6 = _mm512_xor_si512(b6, a2);\ b4 = _mm512_xor_si512(b4, a2);\ TEMP2 = a2;\ b7 = _mm512_xor_si512(b7, a3);\ b5 = _mm512_xor_si512(b5, a3);\ \ /* compute x_i = t_i + t_{i+3} */\ a0 = _mm512_xor_si512(a0, a3);\ a1 = _mm512_xor_si512(a1, a4);\ a2 = _mm512_xor_si512(a2, a5);\ a3 = _mm512_xor_si512(a3, a6);\ a4 = _mm512_xor_si512(a4, a7);\ a5 = _mm512_xor_si512(a5, b0);\ a6 = _mm512_xor_si512(a6, b1);\ a7 = _mm512_xor_si512(a7, TEMP2);\ \ /* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\ /* compute w_i : add y_{i+4} */\ b1 = ALL_1B;\ MUL2(a0, b0, b1);\ a0 = _mm512_xor_si512(a0, TEMP0);\ MUL2(a1, b0, b1);\ a1 = _mm512_xor_si512(a1, TEMP1);\ MUL2(a2, b0, b1);\ a2 = _mm512_xor_si512(a2, b2);\ MUL2(a3, b0, b1);\ a3 = _mm512_xor_si512(a3, b3);\ MUL2(a4, b0, b1);\ a4 = _mm512_xor_si512(a4, b4);\ MUL2(a5, b0, b1);\ a5 = _mm512_xor_si512(a5, b5);\ MUL2(a6, b0, b1);\ a6 = _mm512_xor_si512(a6, b6);\ MUL2(a7, b0, b1);\ a7 = _mm512_xor_si512(a7, b7);\ \ /* compute v_i : double w_i */\ /* add to y_4 y_5 .. v3, v4, ... */\ MUL2(a0, b0, b1);\ b5 = _mm512_xor_si512(b5, a0);\ MUL2(a1, b0, b1);\ b6 = _mm512_xor_si512(b6, a1);\ MUL2(a2, b0, b1);\ b7 = _mm512_xor_si512(b7, a2);\ MUL2(a5, b0, b1);\ b2 = _mm512_xor_si512(b2, a5);\ MUL2(a6, b0, b1);\ b3 = _mm512_xor_si512(b3, a6);\ MUL2(a7, b0, b1);\ b4 = _mm512_xor_si512(b4, a7);\ MUL2(a3, b0, b1);\ MUL2(a4, b0, b1);\ b0 = TEMP0;\ b1 = TEMP1;\ b0 = _mm512_xor_si512(b0, a3);\ b1 = _mm512_xor_si512(b1, a4);\ }/*MixBytes*/ // calculate the round constants seperately and load at startup #define SET_CONSTANTS(){\ ALL_FF = _mm512_set1_epi32( 0xffffffff );\ ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\ TRANSP_MASK = _mm512_set_epi32( \ 0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \ 0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \ 0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \ 0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \ SUBSH_MASK[0] = _mm512_set_epi32( \ 0x3336393c, 0x3f323538, 0x3b3e3134, 0x373a3d30, \ 0x2326292c, 0x2f222528, 0x2b2e2124, 0x272a2d20, \ 0x1316191c, 0x1f121518, 0x1b1e1114, 0x171a1d10, \ 0x0306090c, 0x0f020508, 0x0b0e0104, 0x070a0d00 ); \ SUBSH_MASK[1] = _mm512_set_epi32( \ 0x34373a3d, 0x30333639, 0x3c3f3235, 0x383b3e31, \ 0x24272a2d, 0x20232629, 0x2c2f2225, 0x282b2e21, \ 0x14171a1d, 0x10131619, 0x1c1f1215, 0x181b1e11, \ 0x04070a0d, 0x00030609, 0x0c0f0205, 0x080b0e01 ); \ SUBSH_MASK[2] = _mm512_set_epi32( \ 0x35383b3e, 0x3134373a, 0x3d303336, 0x393c3f32, \ 0x25282b2e, 0x2124272a, 0x2d202326, 0x292c2f22, \ 0x15181b1e, 0x1114171a, 0x1d101316, 0x191c1f12, \ 0x05080b0e, 0x0104070a, 0x0d000306, 0x090c0f02 ); \ SUBSH_MASK[3] = _mm512_set_epi32( \ 0x36393c3f, 0x3235383b, 0x3e313437, 0x3a3d3033, \ 0x26292c2f, 0x2225282b, 0x2e212427, 0x2a2d2023, \ 0x16191c1f, 0x1215181b, 0x1e111417, 0x1a1d1013, \ 0x06090c0f, 0x0205080b, 0x0e010407, 0x0a0d0003 ); \ SUBSH_MASK[4] = _mm512_set_epi32( \ 0x373a3d30, 0x3336393c, 0x3f323538, 0x3b3e3134, \ 0x272a2d20, 0x2326292c, 0x2f222528, 0x2b2e2124, \ 0x171a1d10, 0x1316191c, 0x1f121518, 0x1b1e1114, \ 0x070a0d00, 0x0306090c, 0x0f020508, 0x0b0e0104 ); \ SUBSH_MASK[5] = _mm512_set_epi32( \ 0x383b3e31, 0x34373a3d, 0x30333639, 0x3c3f3235, \ 0x282b2e21, 0x24272a2d, 0x20232629, 0x2c2f2225, \ 0x181b1e11, 0x14171a1d, 0x10131619, 0x1c1f1215, \ 0x080b0e01, 0x04070a0d, 0x00030609, 0x0c0f0205 ); \ SUBSH_MASK[6] = _mm512_set_epi32( \ 0x393c3f32, 0x35383b3e, 0x3134373a, 0x3d303336, \ 0x292c2f22, 0x25282b2e, 0x2124272a, 0x2d202326, \ 0x191c1f12, 0x15181b1e, 0x1114171a, 0x1d101316, \ 0x090c0f02, 0x05080b0e, 0x0104070a, 0x0d000306 ); \ SUBSH_MASK[7] = _mm512_set_epi32( \ 0x3e313437, 0x3a3d3033, 0x36393c3f, 0x3235383b, \ 0x2e212427, 0x2a2d2023, 0x26292c2f, 0x2225282b, \ 0x1e111417, 0x1a1d1013, 0x16191c1f, 0x1215181b, \ 0x0e010407, 0x0a0d0003, 0x06090c0f, 0x0205080b ); \ for( i = 0; i < ROUNDS1024; i++ ) \ { \ ROUND_CONST_P[i] = _mm512_set4_epi32( 0xf0e0d0c0 ^ (i * 0x01010101), \ 0xb0a09080 ^ (i * 0x01010101), \ 0x70605040 ^ (i * 0x01010101), \ 0x30201000 ^ (i * 0x01010101) ); \ ROUND_CONST_Q[i] = _mm512_set4_epi32( 0x0f1f2f3f ^ (i * 0x01010101), \ 0x4f5f6f7f ^ (i * 0x01010101), \ 0x8f9fafbf ^ (i * 0x01010101), \ 0xcfdfefff ^ (i * 0x01010101));\ } \ }while(0);\ /* one round * a0-a7 = input rows * b0-b7 = output rows */ #define SUBMIX(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* SubBytes */\ b0 = _mm512_xor_si512( b0, b0 );\ a0 = _mm512_aesenclast_epi128( a0, b0 );\ a1 = _mm512_aesenclast_epi128( a1, b0 );\ a2 = _mm512_aesenclast_epi128( a2, b0 );\ a3 = _mm512_aesenclast_epi128( a3, b0 );\ a4 = _mm512_aesenclast_epi128( a4, b0 );\ a5 = _mm512_aesenclast_epi128( a5, b0 );\ a6 = _mm512_aesenclast_epi128( a6, b0 );\ a7 = _mm512_aesenclast_epi128( a7, b0 );\ /* MixBytes */\ MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\ } #define ROUNDS_P(){\ uint8_t round_counter = 0;\ for ( round_counter = 0; round_counter < 14; round_counter += 2 ) \ { \ /* AddRoundConstant P1024 */\ xmm8 = _mm512_xor_si512( xmm8, ( ROUND_CONST_P[ round_counter ] ) );\ /* ShiftBytes P1024 + pre-AESENCLAST */\ xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[0] ) );\ xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[1] ) );\ xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[2] ) );\ xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[3] ) );\ xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[4] ) );\ xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[5] ) );\ xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[6] ) );\ xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[7] ) );\ /* SubBytes + MixBytes */\ SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ \ /* AddRoundConstant P1024 */\ xmm0 = _mm512_xor_si512( xmm0, ( ROUND_CONST_P[ round_counter+1 ] ) );\ /* ShiftBytes P1024 + pre-AESENCLAST */\ xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[0] ) );\ xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[1] ) );\ xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[2] ) );\ xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[3] ) );\ xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[4] ) );\ xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[5] ) );\ xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[6] ) );\ xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[7] ) );\ /* SubBytes + MixBytes */\ SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ }\ } #define ROUNDS_Q(){\ uint8_t round_counter = 0;\ for ( round_counter = 0; round_counter < 14; round_counter += 2) \ { \ /* AddRoundConstant Q1024 */\ xmm1 = ALL_FF;\ xmm8 = _mm512_xor_si512( xmm8, xmm1 );\ xmm9 = _mm512_xor_si512( xmm9, xmm1 );\ xmm10 = _mm512_xor_si512( xmm10, xmm1 );\ xmm11 = _mm512_xor_si512( xmm11, xmm1 );\ xmm12 = _mm512_xor_si512( xmm12, xmm1 );\ xmm13 = _mm512_xor_si512( xmm13, xmm1 );\ xmm14 = _mm512_xor_si512( xmm14, xmm1 );\ xmm15 = _mm512_xor_si512( xmm15, ( ROUND_CONST_Q[ round_counter ] ) );\ /* ShiftBytes Q1024 + pre-AESENCLAST */\ xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[1] ) );\ xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[3] ) );\ xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[5] ) );\ xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[7] ) );\ xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[0] ) );\ xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[2] ) );\ xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[4] ) );\ xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[6] ) );\ /* SubBytes + MixBytes */\ SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ \ /* AddRoundConstant Q1024 */\ xmm9 = ALL_FF;\ xmm0 = _mm512_xor_si512( xmm0, xmm9 );\ xmm1 = _mm512_xor_si512( xmm1, xmm9 );\ xmm2 = _mm512_xor_si512( xmm2, xmm9 );\ xmm3 = _mm512_xor_si512( xmm3, xmm9 );\ xmm4 = _mm512_xor_si512( xmm4, xmm9 );\ xmm5 = _mm512_xor_si512( xmm5, xmm9 );\ xmm6 = _mm512_xor_si512( xmm6, xmm9 );\ xmm7 = _mm512_xor_si512( xmm7, ( ROUND_CONST_Q[ round_counter+1 ] ) );\ /* ShiftBytes Q1024 + pre-AESENCLAST */\ xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[1] ) );\ xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[3] ) );\ xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[5] ) );\ xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[7] ) );\ xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[0] ) );\ xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[2] ) );\ xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[4] ) );\ xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[6] ) );\ /* SubBytes + MixBytes */\ SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ }\ } /* Matrix Transpose * input is a 1024-bit state with two columns in one xmm * output is a 1024-bit state with two rows in one xmm * inputs: i0-i7 * outputs: i0-i7 * clobbers: t0-t7 */ #define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\ t0 = TRANSP_MASK;\ \ i6 = _mm512_shuffle_epi8(i6, t0);\ i0 = _mm512_shuffle_epi8(i0, t0);\ i1 = _mm512_shuffle_epi8(i1, t0);\ i2 = _mm512_shuffle_epi8(i2, t0);\ i3 = _mm512_shuffle_epi8(i3, t0);\ t1 = i2;\ i4 = _mm512_shuffle_epi8(i4, t0);\ i5 = _mm512_shuffle_epi8(i5, t0);\ t2 = i4;\ t3 = i6;\ i7 = _mm512_shuffle_epi8(i7, t0);\ \ /* continue with unpack using 4 temp registers */\ t0 = i0;\ t2 = _mm512_unpackhi_epi16(t2, i5);\ i4 = _mm512_unpacklo_epi16(i4, i5);\ t3 = _mm512_unpackhi_epi16(t3, i7);\ i6 = _mm512_unpacklo_epi16(i6, i7);\ t0 = _mm512_unpackhi_epi16(t0, i1);\ t1 = _mm512_unpackhi_epi16(t1, i3);\ i2 = _mm512_unpacklo_epi16(i2, i3);\ i0 = _mm512_unpacklo_epi16(i0, i1);\ \ /* shuffle with immediate */\ t0 = _mm512_shuffle_epi32(t0, 216);\ t1 = _mm512_shuffle_epi32(t1, 216);\ t2 = _mm512_shuffle_epi32(t2, 216);\ t3 = _mm512_shuffle_epi32(t3, 216);\ i0 = _mm512_shuffle_epi32(i0, 216);\ i2 = _mm512_shuffle_epi32(i2, 216);\ i4 = _mm512_shuffle_epi32(i4, 216);\ i6 = _mm512_shuffle_epi32(i6, 216);\ \ /* continue with unpack */\ t4 = i0;\ i0 = _mm512_unpacklo_epi32(i0, i2);\ t4 = _mm512_unpackhi_epi32(t4, i2);\ t5 = t0;\ t0 = _mm512_unpacklo_epi32(t0, t1);\ t5 = _mm512_unpackhi_epi32(t5, t1);\ t6 = i4;\ i4 = _mm512_unpacklo_epi32(i4, i6);\ t7 = t2;\ t6 = _mm512_unpackhi_epi32(t6, i6);\ i2 = t0;\ t2 = _mm512_unpacklo_epi32(t2, t3);\ i3 = t0;\ t7 = _mm512_unpackhi_epi32(t7, t3);\ \ /* there are now 2 rows in each xmm */\ /* unpack to get 1 row of CV in each xmm */\ i1 = i0;\ i1 = _mm512_unpackhi_epi64(i1, i4);\ i0 = _mm512_unpacklo_epi64(i0, i4);\ i4 = t4;\ i3 = _mm512_unpackhi_epi64(i3, t2);\ i5 = t4;\ i2 = _mm512_unpacklo_epi64(i2, t2);\ i6 = t5;\ i5 = _mm512_unpackhi_epi64(i5, t6);\ i7 = t5;\ i4 = _mm512_unpacklo_epi64(i4, t6);\ i7 = _mm512_unpackhi_epi64(i7, t7);\ i6 = _mm512_unpacklo_epi64(i6, t7);\ /* transpose done */\ }/**/ /* Matrix Transpose Inverse * input is a 1024-bit state with two rows in one xmm * output is a 1024-bit state with two columns in one xmm * inputs: i0-i7 * outputs: (i0, o0, i1, i3, o1, o2, i5, i7) * clobbers: t0-t4 */ #define Matrix_Transpose_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, t0, t1, t2, t3, t4){\ /* transpose matrix to get output format */\ o1 = i0;\ i0 = _mm512_unpacklo_epi64(i0, i1);\ o1 = _mm512_unpackhi_epi64(o1, i1);\ t0 = i2;\ i2 = _mm512_unpacklo_epi64(i2, i3);\ t0 = _mm512_unpackhi_epi64(t0, i3);\ t1 = i4;\ i4 = _mm512_unpacklo_epi64(i4, i5);\ t1 = _mm512_unpackhi_epi64(t1, i5);\ t2 = i6;\ o0 = TRANSP_MASK;\ i6 = _mm512_unpacklo_epi64(i6, i7);\ t2 = _mm512_unpackhi_epi64(t2, i7);\ /* load transpose mask into a register, because it will be used 8 times */\ i0 = _mm512_shuffle_epi8(i0, o0);\ i2 = _mm512_shuffle_epi8(i2, o0);\ i4 = _mm512_shuffle_epi8(i4, o0);\ i6 = _mm512_shuffle_epi8(i6, o0);\ o1 = _mm512_shuffle_epi8(o1, o0);\ t0 = _mm512_shuffle_epi8(t0, o0);\ t1 = _mm512_shuffle_epi8(t1, o0);\ t2 = _mm512_shuffle_epi8(t2, o0);\ /* continue with unpack using 4 temp registers */\ t3 = i4;\ o2 = o1;\ o0 = i0;\ t4 = t1;\ \ t3 = _mm512_unpackhi_epi16(t3, i6);\ i4 = _mm512_unpacklo_epi16(i4, i6);\ o0 = _mm512_unpackhi_epi16(o0, i2);\ i0 = _mm512_unpacklo_epi16(i0, i2);\ o2 = _mm512_unpackhi_epi16(o2, t0);\ o1 = _mm512_unpacklo_epi16(o1, t0);\ t4 = _mm512_unpackhi_epi16(t4, t2);\ t1 = _mm512_unpacklo_epi16(t1, t2);\ /* shuffle with immediate */\ i4 = _mm512_shuffle_epi32(i4, 216);\ t3 = _mm512_shuffle_epi32(t3, 216);\ o1 = _mm512_shuffle_epi32(o1, 216);\ o2 = _mm512_shuffle_epi32(o2, 216);\ i0 = _mm512_shuffle_epi32(i0, 216);\ o0 = _mm512_shuffle_epi32(o0, 216);\ t1 = _mm512_shuffle_epi32(t1, 216);\ t4 = _mm512_shuffle_epi32(t4, 216);\ /* continue with unpack */\ i1 = i0;\ i3 = o0;\ i5 = o1;\ i7 = o2;\ i0 = _mm512_unpacklo_epi32(i0, i4);\ i1 = _mm512_unpackhi_epi32(i1, i4);\ o0 = _mm512_unpacklo_epi32(o0, t3);\ i3 = _mm512_unpackhi_epi32(i3, t3);\ o1 = _mm512_unpacklo_epi32(o1, t1);\ i5 = _mm512_unpackhi_epi32(i5, t1);\ o2 = _mm512_unpacklo_epi32(o2, t4);\ i7 = _mm512_unpackhi_epi32(i7, t4);\ /* transpose done */\ }/**/ void INIT_4way( __m512i* chaining ) { static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; /* load IV into registers xmm8 - xmm15 */ xmm8 = chaining[0]; xmm9 = chaining[1]; xmm10 = chaining[2]; xmm11 = chaining[3]; xmm12 = chaining[4]; xmm13 = chaining[5]; xmm14 = chaining[6]; xmm15 = chaining[7]; /* transform chaining value from column ordering into row ordering */ Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7); /* store transposed IV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; } void TF1024_4way( __m512i* chaining, const __m512i* message ) { static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static __m512i QTEMP[8]; static __m512i TEMP0; static __m512i TEMP1; static __m512i TEMP2; /* load message into registers xmm8 - xmm15 (Q = message) */ xmm8 = message[0]; xmm9 = message[1]; xmm10 = message[2]; xmm11 = message[3]; xmm12 = message[4]; xmm13 = message[5]; xmm14 = message[6]; xmm15 = message[7]; /* transform message M from column ordering into row ordering */ Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7); /* store message M (Q input) for later */ QTEMP[0] = xmm8; QTEMP[1] = xmm9; QTEMP[2] = xmm10; QTEMP[3] = xmm11; QTEMP[4] = xmm12; QTEMP[5] = xmm13; QTEMP[6] = xmm14; QTEMP[7] = xmm15; /* xor CV to message to get P input */ /* result: CV+M in xmm8...xmm15 */ xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) ); xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) ); xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) ); xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) ); xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) ); xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) ); xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) ); xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) ); /* compute permutation P */ /* result: P(CV+M) in xmm8...xmm15 */ ROUNDS_P(); /* xor CV to P output (feed-forward) */ /* result: P(CV+M)+CV in xmm8...xmm15 */ xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) ); xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) ); xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) ); xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) ); xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) ); xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) ); xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) ); xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) ); /* store P(CV+M)+CV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; /* load message M (Q input) into xmm8-15 */ xmm8 = QTEMP[0]; xmm9 = QTEMP[1]; xmm10 = QTEMP[2]; xmm11 = QTEMP[3]; xmm12 = QTEMP[4]; xmm13 = QTEMP[5]; xmm14 = QTEMP[6]; xmm15 = QTEMP[7]; /* compute permutation Q */ /* result: Q(M) in xmm8...xmm15 */ ROUNDS_Q(); /* xor Q output */ /* result: P(CV+M)+CV+Q(M) in xmm8...xmm15 */ xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) ); xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) ); xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) ); xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) ); xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) ); xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) ); xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) ); xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) ); /* store CV */ chaining[0] = xmm8; chaining[1] = xmm9; chaining[2] = xmm10; chaining[3] = xmm11; chaining[4] = xmm12; chaining[5] = xmm13; chaining[6] = xmm14; chaining[7] = xmm15; return; } void OF1024_4way( __m512i* chaining ) { static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static __m512i TEMP0; static __m512i TEMP1; static __m512i TEMP2; /* load CV into registers xmm8 - xmm15 */ xmm8 = chaining[0]; xmm9 = chaining[1]; xmm10 = chaining[2]; xmm11 = chaining[3]; xmm12 = chaining[4]; xmm13 = chaining[5]; xmm14 = chaining[6]; xmm15 = chaining[7]; /* compute permutation P */ /* result: P(CV) in xmm8...xmm15 */ ROUNDS_P(); /* xor CV to P output (feed-forward) */ /* result: P(CV)+CV in xmm8...xmm15 */ xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) ); xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) ); xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) ); xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) ); xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) ); xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) ); xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) ); xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) ); /* transpose CV back from row ordering to column ordering */ /* result: final hash value in xmm0, xmm6, xmm13, xmm15 */ Matrix_Transpose_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm4, xmm0, xmm6, xmm1, xmm2, xmm3, xmm5, xmm7); /* we only need to return the truncated half of the state */ chaining[4] = xmm0; chaining[5] = xmm6; chaining[6] = xmm13; chaining[7] = xmm15; return; } #endif // VAES #endif // GROESTL512_INTR_4WAY_H__