/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */ /* * BLAKE implementation. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2007-2010 Projet RNRT SAPHIR * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @author Thomas Pornin */ //#if defined (__SSE4_2__) #include #include #include #include #include "blake-hash-4way.h" #ifdef __cplusplus extern "C"{ #endif #if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BLAKE #define SPH_SMALL_FOOTPRINT_BLAKE 1 #endif #if SPH_SMALL_FOOTPRINT_BLAKE #define SPH_COMPACT_BLAKE_32 1 #endif #if SPH_64 && (SPH_SMALL_FOOTPRINT_BLAKE || !SPH_64_TRUE) #define SPH_COMPACT_BLAKE_64 1 #endif #ifdef _MSC_VER #pragma warning (disable: 4146) #endif // Blake-256 static const uint32_t IV256[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; #if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64 // Blake-256 4 & 8 way, Blake-512 4 way static const unsigned sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; #endif #define Z00 0 #define Z01 1 #define Z02 2 #define Z03 3 #define Z04 4 #define Z05 5 #define Z06 6 #define Z07 7 #define Z08 8 #define Z09 9 #define Z0A A #define Z0B B #define Z0C C #define Z0D D #define Z0E E #define Z0F F #define Z10 E #define Z11 A #define Z12 4 #define Z13 8 #define Z14 9 #define Z15 F #define Z16 D #define Z17 6 #define Z18 1 #define Z19 C #define Z1A 0 #define Z1B 2 #define Z1C B #define Z1D 7 #define Z1E 5 #define Z1F 3 #define Z20 B #define Z21 8 #define Z22 C #define Z23 0 #define Z24 5 #define Z25 2 #define Z26 F #define Z27 D #define Z28 A #define Z29 E #define Z2A 3 #define Z2B 6 #define Z2C 7 #define Z2D 1 #define Z2E 9 #define Z2F 4 #define Z30 7 #define Z31 9 #define Z32 3 #define Z33 1 #define Z34 D #define Z35 C #define Z36 B #define Z37 E #define Z38 2 #define Z39 6 #define Z3A 5 #define Z3B A #define Z3C 4 #define Z3D 0 #define Z3E F #define Z3F 8 #define Z40 9 #define Z41 0 #define Z42 5 #define Z43 7 #define Z44 2 #define Z45 4 #define Z46 A #define Z47 F #define Z48 E #define Z49 1 #define Z4A B #define Z4B C #define Z4C 6 #define Z4D 8 #define Z4E 3 #define Z4F D #define Z50 2 #define Z51 C #define Z52 6 #define Z53 A #define Z54 0 #define Z55 B #define Z56 8 #define Z57 3 #define Z58 4 #define Z59 D #define Z5A 7 #define Z5B 5 #define Z5C F #define Z5D E #define Z5E 1 #define Z5F 9 #define Z60 C #define Z61 5 #define Z62 1 #define Z63 F #define Z64 E #define Z65 D #define Z66 4 #define Z67 A #define Z68 0 #define Z69 7 #define Z6A 6 #define Z6B 3 #define Z6C 9 #define Z6D 2 #define Z6E 8 #define Z6F B #define Z70 D #define Z71 B #define Z72 7 #define Z73 E #define Z74 C #define Z75 1 #define Z76 3 #define Z77 9 #define Z78 5 #define Z79 0 #define Z7A F #define Z7B 4 #define Z7C 8 #define Z7D 6 #define Z7E 2 #define Z7F A #define Z80 6 #define Z81 F #define Z82 E #define Z83 9 #define Z84 B #define Z85 3 #define Z86 0 #define Z87 8 #define Z88 C #define Z89 2 #define Z8A D #define Z8B 7 #define Z8C 1 #define Z8D 4 #define Z8E A #define Z8F 5 #define Z90 A #define Z91 2 #define Z92 8 #define Z93 4 #define Z94 7 #define Z95 6 #define Z96 1 #define Z97 5 #define Z98 F #define Z99 B #define Z9A 9 #define Z9B E #define Z9C 3 #define Z9D C #define Z9E D #define Z9F 0 #define Mx(r, i) Mx_(Z ## r ## i) #define Mx_(n) Mx__(n) #define Mx__(n) M ## n // Blake-256 4 & 8 way #define CSx(r, i) CSx_(Z ## r ## i) #define CSx_(n) CSx__(n) #define CSx__(n) CS ## n #define CS0 SPH_C32(0x243F6A88) #define CS1 SPH_C32(0x85A308D3) #define CS2 SPH_C32(0x13198A2E) #define CS3 SPH_C32(0x03707344) #define CS4 SPH_C32(0xA4093822) #define CS5 SPH_C32(0x299F31D0) #define CS6 SPH_C32(0x082EFA98) #define CS7 SPH_C32(0xEC4E6C89) #define CS8 SPH_C32(0x452821E6) #define CS9 SPH_C32(0x38D01377) #define CSA SPH_C32(0xBE5466CF) #define CSB SPH_C32(0x34E90C6C) #define CSC SPH_C32(0xC0AC29B7) #define CSD SPH_C32(0xC97C50DD) #define CSE SPH_C32(0x3F84D5B5) #define CSF SPH_C32(0xB5470917) #if SPH_COMPACT_BLAKE_32 static const sph_u32 CS[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; #endif #define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \ do { \ a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \ _mm_set_epi32( c1, c1, c1, c1 ), m0 ), b ), a ); \ d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \ c = _mm_add_epi32( c, d ); \ b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \ a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \ _mm_set_epi32( c0, c0, c0, c0 ), m1 ), b ), a ); \ d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \ c = _mm_add_epi32( c, d ); \ b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \ } while (0) #if SPH_COMPACT_BLAKE_32 // Blake-256 4 way #define ROUND_S_4WAY(r) do { \ GS_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \ CS[sigma[r][0x0]], CS[sigma[r][0x1]], V0, V4, V8, VC); \ GS_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \ CS[sigma[r][0x2]], CS[sigma[r][0x3]], V1, V5, V9, VD); \ GS_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \ CS[sigma[r][0x4]], CS[sigma[r][0x5]], V2, V6, VA, VE); \ GS_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \ CS[sigma[r][0x6]], CS[sigma[r][0x7]], V3, V7, VB, VF); \ GS_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \ CS[sigma[r][0x8]], CS[sigma[r][0x9]], V0, V5, VA, VF); \ GS_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \ CS[sigma[r][0xA]], CS[sigma[r][0xB]], V1, V6, VB, VC); \ GS_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \ CS[sigma[r][0xC]], CS[sigma[r][0xD]], V2, V7, V8, VD); \ GS_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \ CS[sigma[r][0xE]], CS[sigma[r][0xF]], V3, V4, V9, VE); \ } while (0) #else #define ROUND_S_4WAY(r) do { \ GS_4WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \ GS_4WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \ GS_4WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \ GS_4WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \ GS_4WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \ GS_4WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \ GS_4WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \ GS_4WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \ } while (0) #endif #define DECL_STATE32_4WAY \ __m128i H0, H1, H2, H3, H4, H5, H6, H7; \ __m128i S0, S1, S2, S3; \ uint32_t T0, T1; #define READ_STATE32_4WAY(state) do { \ H0 = casti_m128i( state->H, 0 ); \ H1 = casti_m128i( state->H, 1 ); \ H2 = casti_m128i( state->H, 2 ); \ H3 = casti_m128i( state->H, 3 ); \ H4 = casti_m128i( state->H, 4 ); \ H5 = casti_m128i( state->H, 5 ); \ H6 = casti_m128i( state->H, 6 ); \ H7 = casti_m128i( state->H, 7 ); \ S0 = casti_m128i( state->S, 0 ); \ S1 = casti_m128i( state->S, 1 ); \ S2 = casti_m128i( state->S, 2 ); \ S3 = casti_m128i( state->S, 3 ); \ T0 = (state)->T0; \ T1 = (state)->T1; \ } while (0) #define WRITE_STATE32_4WAY(state) do { \ casti_m128i( state->H, 0 ) = H0; \ casti_m128i( state->H, 1 ) = H1; \ casti_m128i( state->H, 2 ) = H2; \ casti_m128i( state->H, 3 ) = H3; \ casti_m128i( state->H, 4 ) = H4; \ casti_m128i( state->H, 5 ) = H5; \ casti_m128i( state->H, 6 ) = H6; \ casti_m128i( state->H, 7 ) = H7; \ casti_m128i( state->S, 0 ) = S0; \ casti_m128i( state->S, 1 ) = S1; \ casti_m128i( state->S, 2 ) = S2; \ casti_m128i( state->S, 3 ) = S3; \ (state)->T0 = T0; \ (state)->T1 = T1; \ } while (0) #if SPH_COMPACT_BLAKE_32 // not used #define COMPRESS32_4WAY( rounds ) do { \ __m128i M[16]; \ __m128i V0, V1, V2, V3, V4, V5, V6, V7; \ __m128i V8, V9, VA, VB, VC, VD, VE, VF; \ unsigned r; \ V0 = H0; \ V1 = H1; \ V2 = H2; \ V3 = H3; \ V4 = H4; \ V5 = H5; \ V6 = H6; \ V7 = H7; \ V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \ V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \ VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \ VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \ VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \ _mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \ VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \ _mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \ VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ) \ , _mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \ VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \ _mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \ M[0x0] = mm128_bswap_32( *(buf + 0) ); \ M[0x1] = mm128_bswap_32( *(buf + 1) ); \ M[0x2] = mm128_bswap_32( *(buf + 2) ); \ M[0x3] = mm128_bswap_32( *(buf + 3) ); \ M[0x4] = mm128_bswap_32( *(buf + 4) ); \ M[0x5] = mm128_bswap_32( *(buf + 5) ); \ M[0x6] = mm128_bswap_32( *(buf + 6) ); \ M[0x7] = mm128_bswap_32( *(buf + 7) ); \ M[0x8] = mm128_bswap_32( *(buf + 8) ); \ M[0x9] = mm128_bswap_32( *(buf + 9) ); \ M[0xA] = mm128_bswap_32( *(buf + 10) ); \ M[0xB] = mm128_bswap_32( *(buf + 11) ); \ M[0xC] = mm128_bswap_32( *(buf + 12) ); \ M[0xD] = mm128_bswap_32( *(buf + 13) ); \ M[0xE] = mm128_bswap_32( *(buf + 14) ); \ M[0xF] = mm128_bswap_32( *(buf + 15) ); \ for (r = 0; r < rounds; r ++) \ ROUND_S_4WAY(r); \ H0 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S0, V0 ), V8 ), H0 ); \ H1 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S1, V1 ), V9 ), H1 ); \ H2 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S2, V2 ), VA ), H2 ); \ H3 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S3, V3 ), VB ), H3 ); \ H4 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S0, V4 ), VC ), H4 ); \ H5 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S1, V5 ), VD ), H5 ); \ H6 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S2, V6 ), VE ), H6 ); \ H7 = _mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( S3, V7 ), VF ), H7 ); \ } while (0) #else // current impl #define COMPRESS32_4WAY( rounds ) \ do { \ __m128i M0, M1, M2, M3, M4, M5, M6, M7; \ __m128i M8, M9, MA, MB, MC, MD, ME, MF; \ __m128i V0, V1, V2, V3, V4, V5, V6, V7; \ __m128i V8, V9, VA, VB, VC, VD, VE, VF; \ V0 = H0; \ V1 = H1; \ V2 = H2; \ V3 = H3; \ V4 = H4; \ V5 = H5; \ V6 = H6; \ V7 = H7; \ V8 = _mm_xor_si128( S0, _mm_set1_epi32( CS0 ) ); \ V9 = _mm_xor_si128( S1, _mm_set1_epi32( CS1 ) ); \ VA = _mm_xor_si128( S2, _mm_set1_epi32( CS2 ) ); \ VB = _mm_xor_si128( S3, _mm_set1_epi32( CS3 ) ); \ VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \ VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \ VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \ VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \ M0 = mm128_bswap_32( buf[ 0] ); \ M1 = mm128_bswap_32( buf[ 1] ); \ M2 = mm128_bswap_32( buf[ 2] ); \ M3 = mm128_bswap_32( buf[ 3] ); \ M4 = mm128_bswap_32( buf[ 4] ); \ M5 = mm128_bswap_32( buf[ 5] ); \ M6 = mm128_bswap_32( buf[ 6] ); \ M7 = mm128_bswap_32( buf[ 7] ); \ M8 = mm128_bswap_32( buf[ 8] ); \ M9 = mm128_bswap_32( buf[ 9] ); \ MA = mm128_bswap_32( buf[10] ); \ MB = mm128_bswap_32( buf[11] ); \ MC = mm128_bswap_32( buf[12] ); \ MD = mm128_bswap_32( buf[13] ); \ ME = mm128_bswap_32( buf[14] ); \ MF = mm128_bswap_32( buf[15] ); \ ROUND_S_4WAY(0); \ ROUND_S_4WAY(1); \ ROUND_S_4WAY(2); \ ROUND_S_4WAY(3); \ ROUND_S_4WAY(4); \ ROUND_S_4WAY(5); \ ROUND_S_4WAY(6); \ ROUND_S_4WAY(7); \ if (rounds == 14) \ { \ ROUND_S_4WAY(8); \ ROUND_S_4WAY(9); \ ROUND_S_4WAY(0); \ ROUND_S_4WAY(1); \ ROUND_S_4WAY(2); \ ROUND_S_4WAY(3); \ } \ H0 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V8, V0 ), S0 ), H0 ); \ H1 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V9, V1 ), S1 ), H1 ); \ H2 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VA, V2 ), S2 ), H2 ); \ H3 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VB, V3 ), S3 ), H3 ); \ H4 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VC, V4 ), S0 ), H4 ); \ H5 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VD, V5 ), S1 ), H5 ); \ H6 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VE, V6 ), S2 ), H6 ); \ H7 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VF, V7 ), S3 ), H7 ); \ } while (0) #endif #if defined (__AVX2__) // Blake-256 8 way #define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \ do { \ a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \ _mm256_set1_epi32( c1 ), m0 ), b ), a ); \ d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \ c = _mm256_add_epi32( c, d ); \ b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \ a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \ _mm256_set1_epi32( c0 ), m1 ), b ), a ); \ d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \ c = _mm256_add_epi32( c, d ); \ b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \ } while (0) #define ROUND_S_8WAY(r) do { \ GS_8WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \ GS_8WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \ GS_8WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \ GS_8WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \ GS_8WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \ GS_8WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \ GS_8WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \ GS_8WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \ } while (0) #define DECL_STATE32_8WAY \ __m256i H0, H1, H2, H3, H4, H5, H6, H7; \ __m256i S0, S1, S2, S3; \ sph_u32 T0, T1; #define READ_STATE32_8WAY(state) \ do { \ H0 = (state)->H[0]; \ H1 = (state)->H[1]; \ H2 = (state)->H[2]; \ H3 = (state)->H[3]; \ H4 = (state)->H[4]; \ H5 = (state)->H[5]; \ H6 = (state)->H[6]; \ H7 = (state)->H[7]; \ S0 = (state)->S[0]; \ S1 = (state)->S[1]; \ S2 = (state)->S[2]; \ S3 = (state)->S[3]; \ T0 = (state)->T0; \ T1 = (state)->T1; \ } while (0) #define WRITE_STATE32_8WAY(state) \ do { \ (state)->H[0] = H0; \ (state)->H[1] = H1; \ (state)->H[2] = H2; \ (state)->H[3] = H3; \ (state)->H[4] = H4; \ (state)->H[5] = H5; \ (state)->H[6] = H6; \ (state)->H[7] = H7; \ (state)->S[0] = S0; \ (state)->S[1] = S1; \ (state)->S[2] = S2; \ (state)->S[3] = S3; \ (state)->T0 = T0; \ (state)->T1 = T1; \ } while (0) #define COMPRESS32_8WAY( rounds ) \ do { \ __m256i M0, M1, M2, M3, M4, M5, M6, M7; \ __m256i M8, M9, MA, MB, MC, MD, ME, MF; \ __m256i V0, V1, V2, V3, V4, V5, V6, V7; \ __m256i V8, V9, VA, VB, VC, VD, VE, VF; \ V0 = H0; \ V1 = H1; \ V2 = H2; \ V3 = H3; \ V4 = H4; \ V5 = H5; \ V6 = H6; \ V7 = H7; \ V8 = _mm256_xor_si256( S0, _mm256_set1_epi32( CS0 ) ); \ V9 = _mm256_xor_si256( S1, _mm256_set1_epi32( CS1 ) ); \ VA = _mm256_xor_si256( S2, _mm256_set1_epi32( CS2 ) ); \ VB = _mm256_xor_si256( S3, _mm256_set1_epi32( CS3 ) ); \ VC = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS4 ) ); \ VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS5 ) ); \ VE = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS6 ) ); \ VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS7 ) ); \ M0 = mm256_bswap_32( * buf ); \ M1 = mm256_bswap_32( *(buf+1) ); \ M2 = mm256_bswap_32( *(buf+2) ); \ M3 = mm256_bswap_32( *(buf+3) ); \ M4 = mm256_bswap_32( *(buf+4) ); \ M5 = mm256_bswap_32( *(buf+5) ); \ M6 = mm256_bswap_32( *(buf+6) ); \ M7 = mm256_bswap_32( *(buf+7) ); \ M8 = mm256_bswap_32( *(buf+8) ); \ M9 = mm256_bswap_32( *(buf+9) ); \ MA = mm256_bswap_32( *(buf+10) ); \ MB = mm256_bswap_32( *(buf+11) ); \ MC = mm256_bswap_32( *(buf+12) ); \ MD = mm256_bswap_32( *(buf+13) ); \ ME = mm256_bswap_32( *(buf+14) ); \ MF = mm256_bswap_32( *(buf+15) ); \ ROUND_S_8WAY(0); \ ROUND_S_8WAY(1); \ ROUND_S_8WAY(2); \ ROUND_S_8WAY(3); \ ROUND_S_8WAY(4); \ ROUND_S_8WAY(5); \ ROUND_S_8WAY(6); \ ROUND_S_8WAY(7); \ if (rounds == 14) \ { \ ROUND_S_8WAY(8); \ ROUND_S_8WAY(9); \ ROUND_S_8WAY(0); \ ROUND_S_8WAY(1); \ ROUND_S_8WAY(2); \ ROUND_S_8WAY(3); \ } \ H0 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V8, V0 ), \ S0 ), H0 ); \ H1 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V9, V1 ), \ S1 ), H1 ); \ H2 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VA, V2 ), \ S2 ), H2 ); \ H3 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VB, V3 ), \ S3 ), H3 ); \ H4 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VC, V4 ), \ S0 ), H4 ); \ H5 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VD, V5 ), \ S1 ), H5 ); \ H6 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VE, V6 ), \ S2 ), H6 ); \ H7 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VF, V7 ), \ S3 ), H7 ); \ } while (0) #endif // Blake-256 4 way static const uint32_t salt_zero_4way_small[4] = { 0, 0, 0, 0 }; static void blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv, const uint32_t *salt, int rounds ) { casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] ); casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] ); casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] ); casti_m128i( ctx->H, 3 ) = _mm_set1_epi32( iv[3] ); casti_m128i( ctx->H, 4 ) = _mm_set1_epi32( iv[4] ); casti_m128i( ctx->H, 5 ) = _mm_set1_epi32( iv[5] ); casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] ); casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] ); casti_m128i( ctx->S, 0 ) = m128_zero; casti_m128i( ctx->S, 1 ) = m128_zero; casti_m128i( ctx->S, 2 ) = m128_zero; casti_m128i( ctx->S, 3 ) = m128_zero; /* sc->S[0] = _mm_set1_epi32( salt[0] ); sc->S[1] = _mm_set1_epi32( salt[1] ); sc->S[2] = _mm_set1_epi32( salt[2] ); sc->S[3] = _mm_set1_epi32( salt[3] ); */ ctx->T0 = ctx->T1 = 0; ctx->ptr = 0; ctx->rounds = rounds; } static void blake32_4way( blake_4way_small_context *ctx, const void *data, size_t len ) { __m128i *buf = (__m128i*)ctx->buf; size_t bptr = ctx->ptr<<2; size_t vptr = ctx->ptr >> 2; size_t blen = len << 2; DECL_STATE32_4WAY if ( blen < (sizeof ctx->buf) - bptr ) { memcpy( buf + vptr, data, (sizeof ctx->buf) - bptr ); bptr += blen; ctx->ptr = bptr>>2; return; } READ_STATE32_4WAY( ctx ); while ( blen > 0 ) { size_t clen = ( sizeof ctx->buf ) - bptr; if ( clen > blen ) clen = blen; memcpy( buf + vptr, data, clen ); bptr += clen; data = (const unsigned char *)data + clen; blen -= clen; if ( bptr == ( sizeof ctx->buf ) ) { if ( ( T0 = T0 + 512 ) < 512 ) T1 = T1 + 1; COMPRESS32_4WAY( ctx->rounds ); bptr = 0; } } WRITE_STATE32_4WAY( ctx ); ctx->ptr = bptr>>2; } static void blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n, void *dst, size_t out_size_w32 ) { __m128i buf[16] __attribute__ ((aligned (64))); size_t ptr = ctx->ptr; size_t vptr = ctx->ptr>>2; unsigned bit_len = ( (unsigned)ptr << 3 ); uint32_t tl = ctx->T0 + bit_len; uint32_t th = ctx->T1; if ( ptr == 0 ) { ctx->T0 = 0xFFFFFE00UL; ctx->T1 = 0xFFFFFFFFUL; } else if ( ctx->T0 == 0 ) { ctx->T0 = 0xFFFFFE00UL + bit_len; ctx->T1 = ctx->T1 - 1; } else ctx->T0 -= 512 - bit_len; buf[vptr] = _mm_set1_epi32( 0x80 ); if ( vptr < 12 ) { memset_zero_128( buf + vptr + 1, 13 - vptr ); buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) ); buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) ); buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) ); blake32_4way( ctx, buf + vptr, 64 - ptr ); } else { memset_zero_128( buf + vptr + 1, (60-ptr) >> 2 ); blake32_4way( ctx, buf + vptr, 64 - ptr ); ctx->T0 = 0xFFFFFE00UL; ctx->T1 = 0xFFFFFFFFUL; memset_zero_128( buf, 56>>2 ); buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) ); buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) ); buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) ); blake32_4way( ctx, buf, 64 ); } casti_m128i( dst, 0 ) = mm128_bswap_32( casti_m128i( ctx->H, 0 ) ); casti_m128i( dst, 1 ) = mm128_bswap_32( casti_m128i( ctx->H, 1 ) ); casti_m128i( dst, 2 ) = mm128_bswap_32( casti_m128i( ctx->H, 2 ) ); casti_m128i( dst, 3 ) = mm128_bswap_32( casti_m128i( ctx->H, 3 ) ); casti_m128i( dst, 4 ) = mm128_bswap_32( casti_m128i( ctx->H, 4 ) ); casti_m128i( dst, 5 ) = mm128_bswap_32( casti_m128i( ctx->H, 5 ) ); casti_m128i( dst, 6 ) = mm128_bswap_32( casti_m128i( ctx->H, 6 ) ); casti_m128i( dst, 7 ) = mm128_bswap_32( casti_m128i( ctx->H, 7 ) ); } #if defined (__AVX2__) // Blake-256 8 way static const sph_u32 salt_zero_8way_small[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static void blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv, const sph_u32 *salt, int rounds ) { int i; for ( i = 0; i < 8; i++ ) sc->H[i] = _mm256_set1_epi32( iv[i] ); for ( i = 0; i < 4; i++ ) sc->S[i] = _mm256_set1_epi32( salt[i] ); sc->T0 = sc->T1 = 0; sc->ptr = 0; sc->rounds = rounds; } static void blake32_8way( blake_8way_small_context *sc, const void *data, size_t len ) { __m256i *vdata = (__m256i*)data; __m256i *buf; size_t ptr; const int buf_size = 64; // number of elements, sizeof/4 DECL_STATE32_8WAY buf = sc->buf; ptr = sc->ptr; if ( len < buf_size - ptr ) { memcpy_256( buf + (ptr>>2), vdata, len>>2 ); ptr += len; sc->ptr = ptr; return; } READ_STATE32_8WAY(sc); while ( len > 0 ) { size_t clen; clen = buf_size - ptr; if (clen > len) clen = len; memcpy_256( buf + (ptr>>2), vdata, clen>>2 ); ptr += clen; vdata += (clen>>2); len -= clen; if ( ptr == buf_size ) { if ( ( T0 = SPH_T32(T0 + 512) ) < 512 ) T1 = SPH_T32(T1 + 1); COMPRESS32_8WAY( sc->rounds ); ptr = 0; } } WRITE_STATE32_8WAY(sc); sc->ptr = ptr; } static void blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n, void *dst, size_t out_size_w32 ) { // union { __m256i buf[16]; // sph_u32 dummy; // } u; size_t ptr, k; unsigned bit_len; sph_u32 th, tl; __m256i *out; ptr = sc->ptr; bit_len = ((unsigned)ptr << 3); buf[ptr>>2] = _mm256_set1_epi32( 0x80 ); tl = sc->T0 + bit_len; th = sc->T1; if ( ptr == 0 ) { sc->T0 = SPH_C32(0xFFFFFE00UL); sc->T1 = SPH_C32(0xFFFFFFFFUL); } else if ( sc->T0 == 0 ) { sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len; sc->T1 = SPH_T32(sc->T1 - 1); } else sc->T0 -= 512 - bit_len; if ( ptr <= 52 ) { memset_zero_256( buf + (ptr>>2) + 1, (52 - ptr) >> 2 ); if ( out_size_w32 == 8 ) buf[52>>2] = _mm256_or_si256( buf[52>>2], _mm256_set1_epi32( 0x01000000UL ) ); *(buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) ); *(buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) ); blake32_8way( sc, buf + (ptr>>2), 64 - ptr ); } else { memset_zero_256( buf + (ptr>>2) + 1, (60-ptr) >> 2 ); blake32_8way( sc, buf + (ptr>>2), 64 - ptr ); sc->T0 = SPH_C32(0xFFFFFE00UL); sc->T1 = SPH_C32(0xFFFFFFFFUL); memset_zero_256( buf, 56>>2 ); if ( out_size_w32 == 8 ) buf[52>>2] = _mm256_set1_epi32( 0x01000000UL ); *(buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) ); *(buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) ); blake32_8way( sc, buf, 64 ); } out = (__m256i*)dst; for ( k = 0; k < out_size_w32; k++ ) out[k] = mm256_bswap_32( sc->H[k] ); } #endif // Blake-256 4 way // default 14 rounds, backward copatibility void blake256_4way_init(void *ctx) { blake32_4way_init( ctx, IV256, salt_zero_4way_small, 14 ); } void blake256_4way(void *ctx, const void *data, size_t len) { blake32_4way(ctx, data, len); } void blake256_4way_close(void *ctx, void *dst) { blake32_4way_close(ctx, 0, 0, dst, 8); } #if defined(__AVX2__) // Blake-256 8 way void blake256_8way_init(void *cc) { blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 ); } void blake256_8way(void *cc, const void *data, size_t len) { blake32_8way(cc, data, len); } void blake256_8way_close(void *cc, void *dst) { blake32_8way_close(cc, 0, 0, dst, 8); } #endif // 14 rounds Blake, Decred void blake256r14_4way_init(void *cc) { blake32_4way_init( cc, IV256, salt_zero_4way_small, 14 ); } void blake256r14_4way(void *cc, const void *data, size_t len) { blake32_4way(cc, data, len); } void blake256r14_4way_close(void *cc, void *dst) { blake32_4way_close(cc, 0, 0, dst, 8); } #if defined(__AVX2__) void blake256r14_8way_init(void *cc) { blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 ); } void blake256r14_8way(void *cc, const void *data, size_t len) { blake32_8way(cc, data, len); } void blake256r14_8way_close(void *cc, void *dst) { blake32_8way_close(cc, 0, 0, dst, 8); } #endif // 8 rounds Blakecoin, Vanilla void blake256r8_4way_init(void *cc) { blake32_4way_init( cc, IV256, salt_zero_4way_small, 8 ); } void blake256r8_4way(void *cc, const void *data, size_t len) { blake32_4way(cc, data, len); } void blake256r8_4way_close(void *cc, void *dst) { blake32_4way_close(cc, 0, 0, dst, 8); } #if defined (__AVX2__) void blake256r8_8way_init(void *cc) { blake32_8way_init( cc, IV256, salt_zero_8way_small, 8 ); } void blake256r8_8way(void *cc, const void *data, size_t len) { blake32_8way(cc, data, len); } void blake256r8_8way_close(void *cc, void *dst) { blake32_8way_close(cc, 0, 0, dst, 8); } #endif #ifdef __cplusplus } #endif //#endif