/** * x16r algo implementation * * Implementation by tpruvot@github Jan 2018 * Optimized by JayDDee@github Jan 2018 */ #include "x16r-gate.h" #if !defined(X16R_8WAY) && !defined(X16R_4WAY) #include "algo/tiger/sph_tiger.h" union _x16rv2_context_overlay { #if defined(__AES__) hashState_echo echo; hashState_groestl groestl; hashState_fugue fugue; #else sph_groestl512_context groestl; sph_echo512_context echo; sph_fugue512_context fugue; #endif sph_blake512_context blake; sph_bmw512_context bmw; sph_skein512_context skein; sph_jh512_context jh; sph_keccak512_context keccak; hashState_luffa luffa; cubehashParam cube; shavite512_context shavite; hashState_sd simd; sph_hamsi512_context hamsi; sph_shabal512_context shabal; sph_whirlpool_context whirlpool; sph_sha512_context sha512; sph_tiger_context tiger; }; typedef union _x16rv2_context_overlay x16rv2_context_overlay; // Pad the 24 bytes tiger hash to 64 bytes inline void padtiger512(uint32_t* hash) { for (int i = (24/4); i < (64/4); i++) hash[i] = 0; } int x16rv2_hash( void* output, const void* input, int thrid ) { uint32_t _ALIGN(128) hash[16]; x16rv2_context_overlay ctx; void *in = (void*) input; int size = 80; for ( int i = 0; i < 16; i++ ) { const char elem = x16r_hash_order[i]; const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch ( algo ) { case BLAKE: sph_blake512_init( &ctx.blake ); sph_blake512( &ctx.blake, in, size ); sph_blake512_close( &ctx.blake, hash ); break; case BMW: sph_bmw512_init( &ctx.bmw ); sph_bmw512(&ctx.bmw, in, size); sph_bmw512_close(&ctx.bmw, hash); break; case GROESTL: #if defined(__AES__) init_groestl( &ctx.groestl, 64 ); update_and_final_groestl( &ctx.groestl, (char*)hash, (const char*)in, size<<3 ); #else sph_groestl512_init( &ctx.groestl ); sph_groestl512( &ctx.groestl, in, size ); sph_groestl512_close(&ctx.groestl, hash); #endif break; case SKEIN: sph_skein512_init( &ctx.skein ); sph_skein512( &ctx.skein, in, size ); sph_skein512_close( &ctx.skein, hash ); break; case JH: sph_jh512_init( &ctx.jh ); sph_jh512(&ctx.jh, in, size ); sph_jh512_close(&ctx.jh, hash ); break; case KECCAK: sph_tiger_init( &ctx.tiger ); sph_tiger( &ctx.tiger, in, size ); sph_tiger_close( &ctx.tiger, hash ); padtiger512( hash ); sph_keccak512_init( &ctx.keccak ); sph_keccak512( &ctx.keccak, hash, 64 ); sph_keccak512_close( &ctx.keccak, hash ); break; case LUFFA: sph_tiger_init( &ctx.tiger ); sph_tiger( &ctx.tiger, in, size ); sph_tiger_close( &ctx.tiger, hash ); padtiger512( hash ); init_luffa( &ctx.luffa, 512 ); update_and_final_luffa( &ctx.luffa, (BitSequence*)hash, (const BitSequence*)hash, 64 ); break; case CUBEHASH: cubehashInit( &ctx.cube, 512, 16, 32 ); cubehashUpdateDigest( &ctx.cube, (byte*) hash, (const byte*)in, size ); break; case SHAVITE: shavite512_full( &ctx.shavite, hash, in, size ); break; case SIMD: init_sd( &ctx.simd, 512 ); update_final_sd( &ctx.simd, (BitSequence *)hash, (const BitSequence*)in, size<<3 ); break; case ECHO: #if defined(__AES__) init_echo( &ctx.echo, 512 ); update_final_echo ( &ctx.echo, (BitSequence *)hash, (const BitSequence*)in, size<<3 ); #else sph_echo512_init( &ctx.echo ); sph_echo512( &ctx.echo, in, size ); sph_echo512_close( &ctx.echo, hash ); #endif break; case HAMSI: sph_hamsi512_init( &ctx.hamsi ); sph_hamsi512( &ctx.hamsi, in, size ); sph_hamsi512_close( &ctx.hamsi, hash ); break; case FUGUE: #if defined(__AES__) fugue512_full( &ctx.fugue, hash, in, size ); #else sph_fugue512_full( &ctx.fugue, hash, in, size ); #endif break; case SHABAL: sph_shabal512_init( &ctx.shabal ); sph_shabal512( &ctx.shabal, in, size ); sph_shabal512_close( &ctx.shabal, hash ); break; case WHIRLPOOL: sph_whirlpool512_full( &ctx.whirlpool, hash, in, size ); break; case SHA_512: sph_tiger_init( &ctx.tiger ); sph_tiger( &ctx.tiger, in, size ); sph_tiger_close( &ctx.tiger, hash ); padtiger512( hash ); sph_sha512_init( &ctx.sha512 ); sph_sha512( &ctx.sha512, hash, 64 ); sph_sha512_close( &ctx.sha512, hash ); break; } if ( work_restart[thrid].restart ) return 0; in = (void*) hash; size = 64; } memcpy(output, hash, 32); return 1; } int scanhash_x16rv2( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t _ALIGN(128) hash32[8]; uint32_t _ALIGN(128) edata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const int thr_id = mythr->id; uint32_t nonce = first_nonce; volatile uint8_t *restart = &(work_restart[thr_id].restart); const bool bench = opt_benchmark; casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) ); casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) ); casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) ); casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) ); casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) ); static __thread uint32_t s_ntime = UINT32_MAX; if ( s_ntime != pdata[17] ) { uint32_t ntime = swab32(pdata[17]); x16_r_s_getAlgoString( (const uint8_t*) (&edata[1]), x16r_hash_order ); s_ntime = ntime; if ( opt_debug && !thr_id ) applog( LOG_DEBUG, "hash order %s (%08x)", x16r_hash_order, ntime ); } if ( bench ) ptarget[7] = 0x0cff; do { edata[19] = nonce; if ( x16rv2_hash( hash32, edata, thr_id ) ) if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) ) { pdata[19] = bswap_32( nonce ); submit_solution( work, hash32, mythr ); } nonce++; } while ( nonce < max_nonce && !(*restart) ); pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce; return 0; } #endif