/* groestl-intr-aes.h Aug 2011 * * Groestl implementation with intrinsics using ssse3, sse4.1, and aes * instructions. * Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz * * This code is placed in the public domain */ #include "hash-groestl256.h" static const v128u64_t round_const_l0[] __attribute__ ((aligned (64))) = { { 0x7060504030201000, 0xffffffffffffffff }, { 0x7161514131211101, 0xffffffffffffffff }, { 0x7262524232221202, 0xffffffffffffffff }, { 0x7363534333231303, 0xffffffffffffffff }, { 0x7464544434241404, 0xffffffffffffffff }, { 0x7565554535251505, 0xffffffffffffffff }, { 0x7666564636261606, 0xffffffffffffffff }, { 0x7767574737271707, 0xffffffffffffffff }, { 0x7868584838281808, 0xffffffffffffffff }, { 0x7969594939291909, 0xffffffffffffffff } }; static const v128u64_t round_const_l7[] __attribute__ ((aligned (64))) = { { 0x0000000000000000, 0x8f9fafbfcfdfefff }, { 0x0000000000000000, 0x8e9eaebecedeeefe }, { 0x0000000000000000, 0x8d9dadbdcdddedfd }, { 0x0000000000000000, 0x8c9cacbcccdcecfc }, { 0x0000000000000000, 0x8b9babbbcbdbebfb }, { 0x0000000000000000, 0x8a9aaabacadaeafa }, { 0x0000000000000000, 0x8999a9b9c9d9e9f9 }, { 0x0000000000000000, 0x8898a8b8c8d8e8f8 }, { 0x0000000000000000, 0x8797a7b7c7d7e7f7 }, { 0x0000000000000000, 0x8696a6b6c6d6e6f6 } }; static const v128u64_t TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02 }; static const v128u64_t SUBSH_MASK0 = { 0x0c0f0104070b0e00, 0x03060a0d08020509 }; static const v128u64_t SUBSH_MASK1 = { 0x0e090205000d0801, 0x04070c0f0a03060b }; static const v128u64_t SUBSH_MASK2 = { 0x080b0306010f0a02, 0x05000e090c04070d }; static const v128u64_t SUBSH_MASK3 = { 0x0a0d040702090c03, 0x0601080b0e05000f }; static const v128u64_t SUBSH_MASK4 = { 0x0b0e0500030a0d04, 0x0702090c0f060108 }; static const v128u64_t SUBSH_MASK5 = { 0x0d080601040c0f05, 0x00030b0e0907020a }; static const v128u64_t SUBSH_MASK6 = { 0x0f0a0702050e0906, 0x01040d080b00030c }; static const v128u64_t SUBSH_MASK7 = { 0x090c000306080b07, 0x02050f0a0d01040e }; #if defined(__ARM_NEON) // No fast shuffle on NEON static const uint32x4_t vmask_d8 = { 3, 1, 2, 0 }; #define gr_shuffle32( v ) v128_shufflev32( v, vmask_d8 ) #else #define gr_shuffle32( v ) _mm_shuffle_epi32( v, 0xd8 ) #endif #define tos(a) #a #define tostr(a) tos(a) /* xmm[i] will be multiplied by 2 * xmm[j] will be lost * xmm[k] has to be all 0x1b */ #define MUL2( i, j, k ) \ j = v128_cmpgt8( v128_zero, i ); \ i = v128_add8( i, i ); \ i = v128_xorand( i, j, k ); /* Yet another implementation of MixBytes. This time we use the formulae (3) from the paper "Byte Slicing Groestl". Input: a0, ..., a7 Output: b0, ..., b7 = MixBytes(a0,...,a7). but we use the relations: t_i = a_i + a_{i+3} x_i = t_i + t_{i+3} y_i = t_i + t+{i+2} + a_{i+6} z_i = 2*x_i w_i = z_i + y_{i+4} v_i = 2*w_i b_i = v_{i+3} + y_{i+4} We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there and then adding v_i computed in the meantime in registers xmm0..xmm7. We almost fit into 16 registers, need only 3 spills to memory. This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b. K. Matusiewicz, 2011/05/29 */ #if defined(__AVX512VL__) #define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* t_i = a_i + a_{i+1} */\ b6 = a0;\ b7 = a1;\ a0 = v128_xor(a0, a1);\ b0 = a2;\ a1 = v128_xor(a1, a2);\ b1 = a3;\ TEMP2 = v128_xor(a2, a3);\ b2 = a4;\ a3 = v128_xor(a3, a4);\ b3 = a5;\ a4 = v128_xor(a4, a5);\ b4 = a6;\ a5 = v128_xor(a5, a6);\ b5 = a7;\ a6 = v128_xor(a6, a7);\ a7 = v128_xor(a7, b6);\ \ /* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\ TEMP0 = v128_xor3( b0, a4, a6 ); \ /* spill values y_4, y_5 to memory */\ TEMP1 = v128_xor3( b1, a5, a7 );\ b2 = v128_xor3( b2, a6, a0 ); \ /* save values t0, t1, t2 to xmm8, xmm9 and memory */\ b0 = a0;\ b3 = v128_xor3( b3, a7, a1 ); \ b1 = a1;\ b6 = v128_xor3( b6, a4, TEMP2 ); \ b4 = v128_xor3( b4, a0, TEMP2 ); \ b7 = v128_xor3( b7, a5, a3 ); \ b5 = v128_xor3( b5, a1, a3 ); \ \ /* compute x_i = t_i + t_{i+3} */\ a0 = v128_xor(a0, a3);\ a1 = v128_xor(a1, a4);\ a2 = v128_xor(TEMP2, a5);\ a3 = v128_xor(a3, a6);\ a4 = v128_xor(a4, a7);\ a5 = v128_xor(a5, b0);\ a6 = v128_xor(a6, b1);\ a7 = v128_xor(a7, TEMP2);\ \ /* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\ /* compute w_i : add y_{i+4} */\ b1 = v128_64( 0x1b1b1b1b1b1b1b1b );\ MUL2(a0, b0, b1);\ a0 = v128_xor(a0, TEMP0);\ MUL2(a1, b0, b1);\ a1 = v128_xor(a1, TEMP1);\ MUL2(a2, b0, b1);\ a2 = v128_xor(a2, b2);\ MUL2(a3, b0, b1);\ a3 = v128_xor(a3, b3);\ MUL2(a4, b0, b1);\ a4 = v128_xor(a4, b4);\ MUL2(a5, b0, b1);\ a5 = v128_xor(a5, b5);\ MUL2(a6, b0, b1);\ a6 = v128_xor(a6, b6);\ MUL2(a7, b0, b1);\ a7 = v128_xor(a7, b7);\ \ /* compute v_i : double w_i */\ /* add to y_4 y_5 .. v3, v4, ... */\ MUL2(a0, b0, b1);\ b5 = v128_xor(b5, a0);\ MUL2(a1, b0, b1);\ b6 = v128_xor(b6, a1);\ MUL2(a2, b0, b1);\ b7 = v128_xor(b7, a2);\ MUL2(a5, b0, b1);\ b2 = v128_xor(b2, a5);\ MUL2(a6, b0, b1);\ b3 = v128_xor(b3, a6);\ MUL2(a7, b0, b1);\ b4 = v128_xor(b4, a7);\ MUL2(a3, b0, b1);\ MUL2(a4, b0, b1);\ b0 = TEMP0;\ b1 = TEMP1;\ b0 = v128_xor(b0, a3);\ b1 = v128_xor(b1, a4);\ }/*MixBytes*/ #else #define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* t_i = a_i + a_{i+1} */\ b6 = a0;\ b7 = a1;\ a0 = v128_xor(a0, a1);\ b0 = a2;\ a1 = v128_xor(a1, a2);\ b1 = a3;\ a2 = v128_xor(a2, a3);\ b2 = a4;\ a3 = v128_xor(a3, a4);\ b3 = a5;\ a4 = v128_xor(a4, a5);\ b4 = a6;\ a5 = v128_xor(a5, a6);\ b5 = a7;\ a6 = v128_xor(a6, a7);\ a7 = v128_xor(a7, b6);\ \ /* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\ b0 = v128_xor(b0, a4);\ b6 = v128_xor(b6, a4);\ b1 = v128_xor(b1, a5);\ b7 = v128_xor(b7, a5);\ b2 = v128_xor(b2, a6);\ b0 = v128_xor(b0, a6);\ /* spill values y_4, y_5 to memory */\ TEMP0 = b0;\ b3 = v128_xor(b3, a7);\ b1 = v128_xor(b1, a7);\ TEMP1 = b1;\ b4 = v128_xor(b4, a0);\ b2 = v128_xor(b2, a0);\ /* save values t0, t1, t2 to xmm8, xmm9 and memory */\ b0 = a0;\ b5 = v128_xor(b5, a1);\ b3 = v128_xor(b3, a1);\ b1 = a1;\ b6 = v128_xor(b6, a2);\ b4 = v128_xor(b4, a2);\ TEMP2 = a2;\ b7 = v128_xor(b7, a3);\ b5 = v128_xor(b5, a3);\ \ /* compute x_i = t_i + t_{i+3} */\ a0 = v128_xor(a0, a3);\ a1 = v128_xor(a1, a4);\ a2 = v128_xor(a2, a5);\ a3 = v128_xor(a3, a6);\ a4 = v128_xor(a4, a7);\ a5 = v128_xor(a5, b0);\ a6 = v128_xor(a6, b1);\ a7 = v128_xor(a7, TEMP2);\ \ /* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\ /* compute w_i : add y_{i+4} */\ b1 = v128_64( 0x1b1b1b1b1b1b1b1b );\ MUL2(a0, b0, b1);\ a0 = v128_xor(a0, TEMP0);\ MUL2(a1, b0, b1);\ a1 = v128_xor(a1, TEMP1);\ MUL2(a2, b0, b1);\ a2 = v128_xor(a2, b2);\ MUL2(a3, b0, b1);\ a3 = v128_xor(a3, b3);\ MUL2(a4, b0, b1);\ a4 = v128_xor(a4, b4);\ MUL2(a5, b0, b1);\ a5 = v128_xor(a5, b5);\ MUL2(a6, b0, b1);\ a6 = v128_xor(a6, b6);\ MUL2(a7, b0, b1);\ a7 = v128_xor(a7, b7);\ \ /* compute v_i : double w_i */\ /* add to y_4 y_5 .. v3, v4, ... */\ MUL2(a0, b0, b1);\ b5 = v128_xor(b5, a0);\ MUL2(a1, b0, b1);\ b6 = v128_xor(b6, a1);\ MUL2(a2, b0, b1);\ b7 = v128_xor(b7, a2);\ MUL2(a5, b0, b1);\ b2 = v128_xor(b2, a5);\ MUL2(a6, b0, b1);\ b3 = v128_xor(b3, a6);\ MUL2(a7, b0, b1);\ b4 = v128_xor(b4, a7);\ MUL2(a3, b0, b1);\ MUL2(a4, b0, b1);\ b0 = TEMP0;\ b1 = TEMP1;\ b0 = v128_xor(b0, a3);\ b1 = v128_xor(b1, a4);\ }/*MixBytes*/ #endif /* one round * i = round number * a0-a7 = input rows * b0-b7 = output rows */ #define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\ /* AddRoundConstant */\ b1 = v128_set64( 0xffffffffffffffff, 0 ); \ a0 = v128_xor( a0, casti_v128( round_const_l0, i ) ); \ a1 = v128_xor( a1, b1 ); \ a2 = v128_xor( a2, b1 ); \ a3 = v128_xor( a3, b1 ); \ a4 = v128_xor( a4, b1 ); \ a5 = v128_xor( a5, b1 ); \ a6 = v128_xor( a6, b1 ); \ a7 = v128_xor( a7, casti_v128( round_const_l7, i ) ); \ \ /* ShiftBytes + SubBytes (interleaved) */\ b0 = v128_xor(b0, b0);\ a0 = v128_shuffle8( a0, SUBSH_MASK0 ); \ a0 = v128_aesenclast( a0, b0 );\ a1 = v128_shuffle8( a1, SUBSH_MASK1 ); \ a1 = v128_aesenclast( a1, b0 );\ a2 = v128_shuffle8( a2, SUBSH_MASK2 ); \ a2 = v128_aesenclast( a2, b0 );\ a3 = v128_shuffle8( a3, SUBSH_MASK3 ); \ a3 = v128_aesenclast( a3, b0 );\ a4 = v128_shuffle8( a4, SUBSH_MASK4 ); \ a4 = v128_aesenclast( a4, b0 );\ a5 = v128_shuffle8( a5, SUBSH_MASK5 ); \ a5 = v128_aesenclast( a5, b0 );\ a6 = v128_shuffle8( a6, SUBSH_MASK6 ); \ a6 = v128_aesenclast( a6, b0 );\ a7 = v128_shuffle8( a7, SUBSH_MASK7 ); \ a7 = v128_aesenclast( a7, b0 );\ \ /* MixBytes */\ MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\ \ } /* 10 rounds, P and Q in parallel */ #define ROUNDS_P_Q(){\ ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\ ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\ } /* Matrix Transpose Step 1 * input is a 512-bit state with two columns in one xmm * output is a 512-bit state with two rows in one xmm * inputs: i0-i3 * outputs: i0, o1-o3 * clobbers: t0 */ #define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\ t0 = TRANSP_MASK; \ \ i0 = v128_shuffle8(i0, t0);\ i1 = v128_shuffle8(i1, t0);\ i2 = v128_shuffle8(i2, t0);\ i3 = v128_shuffle8(i3, t0);\ \ o1 = i0;\ t0 = i2;\ \ i0 = v128_unpacklo16(i0, i1);\ o1 = v128_unpackhi16(o1, i1);\ i2 = v128_unpacklo16(i2, i3);\ t0 = v128_unpackhi16(t0, i3);\ \ i0 = gr_shuffle32( i0 ); \ o1 = gr_shuffle32( o1 ); \ i2 = gr_shuffle32( i2 ); \ t0 = gr_shuffle32( t0 ); \ \ o2 = i0;\ o3 = o1;\ \ i0 = v128_unpacklo32(i0, i2);\ o1 = v128_unpacklo32(o1, t0);\ o2 = v128_unpackhi32(o2, i2);\ o3 = v128_unpackhi32(o3, t0);\ }/**/ /* Matrix Transpose Step 2 * input are two 512-bit states with two rows in one xmm * output are two 512-bit states with one row of each state in one xmm * inputs: i0-i3 = P, i4-i7 = Q * outputs: (i0, o1-o7) = (P|Q) * possible reassignments: (output reg = input reg) * * i1 -> o3-7 * * i2 -> o5-7 * * i3 -> o7 * * i4 -> o3-7 * * i5 -> o6-7 */ #define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\ o1 = i0;\ o2 = i1;\ i0 = v128_unpacklo64(i0, i4);\ o1 = v128_unpackhi64(o1, i4);\ o3 = i1;\ o4 = i2;\ o2 = v128_unpacklo64(o2, i5);\ o3 = v128_unpackhi64(o3, i5);\ o5 = i2;\ o6 = i3;\ o4 = v128_unpacklo64(o4, i6);\ o5 = v128_unpackhi64(o5, i6);\ o7 = i3;\ o6 = v128_unpacklo64(o6, i7);\ o7 = v128_unpackhi64(o7, i7);\ }/**/ /* Matrix Transpose Inverse Step 2 * input are two 512-bit states with one row of each state in one xmm * output are two 512-bit states with two rows in one xmm * inputs: i0-i7 = (P|Q) * outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q */ #define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\ o0 = i0;\ i0 = v128_unpacklo64(i0, i1);\ o0 = v128_unpackhi64(o0, i1);\ o1 = i2;\ i2 = v128_unpacklo64(i2, i3);\ o1 = v128_unpackhi64(o1, i3);\ o2 = i4;\ i4 = v128_unpacklo64(i4, i5);\ o2 = v128_unpackhi64(o2, i5);\ o3 = i6;\ i6 = v128_unpacklo64(i6, i7);\ o3 = v128_unpackhi64(o3, i7);\ }/**/ /* Matrix Transpose Output Step 2 * input is one 512-bit state with two rows in one xmm * output is one 512-bit state with one row in the low 64-bits of one xmm * inputs: i0,i2,i4,i6 = S * outputs: (i0-7) = (0|S) */ #define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\ t0 = v128_xor(t0, t0);\ i1 = i0;\ i3 = i2;\ i5 = i4;\ i7 = i6;\ i0 = v128_unpacklo64(i0, t0);\ i1 = v128_unpackhi64(i1, t0);\ i2 = v128_unpacklo64(i2, t0);\ i3 = v128_unpackhi64(i3, t0);\ i4 = v128_unpacklo64(i4, t0);\ i5 = v128_unpackhi64(i5, t0);\ i6 = v128_unpacklo64(i6, t0);\ i7 = v128_unpackhi64(i7, t0);\ }/**/ /* Matrix Transpose Output Inverse Step 2 * input is one 512-bit state with one row in the low 64-bits of one xmm * output is one 512-bit state with two rows in one xmm * inputs: i0-i7 = (0|S) * outputs: (i0, i2, i4, i6) = S */ #define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\ i0 = v128_unpacklo64(i0, i1);\ i2 = v128_unpacklo64(i2, i3);\ i4 = v128_unpacklo64(i4, i5);\ i6 = v128_unpacklo64(i6, i7);\ }/**/ void INIT256( v128_t* chaining ) { static v128_t xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7; static v128_t /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15; /* load IV into registers xmm12 - xmm15 */ xmm12 = chaining[0]; xmm13 = chaining[1]; xmm14 = chaining[2]; xmm15 = chaining[3]; /* transform chaining value from column ordering into row ordering */ /* we put two rows (64 bit) of the IV into one 128-bit XMM register */ Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0); /* store transposed IV */ chaining[0] = xmm12; chaining[1] = xmm2; chaining[2] = xmm6; chaining[3] = xmm7; } void TF512( v128_t* chaining, v128_t* message ) { static v128_t xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static v128_t xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static v128_t TEMP0; static v128_t TEMP1; static v128_t TEMP2; #ifdef IACA_TRACE IACA_START; #endif /* load message into registers xmm12 - xmm15 */ xmm12 = message[0]; xmm13 = message[1]; xmm14 = message[2]; xmm15 = message[3]; /* transform message M from column ordering into row ordering */ /* we first put two rows (64 bit) of the message into one 128-bit xmm register */ Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0); /* load previous chaining value */ /* we first put two rows (64 bit) of the CV into one 128-bit xmm register */ xmm8 = chaining[0]; xmm0 = chaining[1]; xmm4 = chaining[2]; xmm5 = chaining[3]; /* xor message to CV get input of P */ /* result: CV+M in xmm8, xmm0, xmm4, xmm5 */ xmm8 = v128_xor(xmm8, xmm12); xmm0 = v128_xor(xmm0, xmm2); xmm4 = v128_xor(xmm4, xmm6); xmm5 = v128_xor(xmm5, xmm7); /* there are now 2 rows of the Groestl state (P and Q) in each xmm register */ /* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */ /* result: the 8 rows of P and Q in xmm8 - xmm12 */ Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15); /* compute the two permutations P and Q in parallel */ ROUNDS_P_Q(); /* unpack again to get two rows of P or two rows of Q in one xmm register */ Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3); /* xor output of P and Q */ /* result: P(CV+M)+Q(M) in xmm0...xmm3 */ xmm0 = v128_xor(xmm0, xmm8); xmm1 = v128_xor(xmm1, xmm10); xmm2 = v128_xor(xmm2, xmm12); xmm3 = v128_xor(xmm3, xmm14); /* xor CV (feed-forward) */ /* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */ xmm0 = v128_xor(xmm0, (chaining[0])); xmm1 = v128_xor(xmm1, (chaining[1])); xmm2 = v128_xor(xmm2, (chaining[2])); xmm3 = v128_xor(xmm3, (chaining[3])); /* store CV */ chaining[0] = xmm0; chaining[1] = xmm1; chaining[2] = xmm2; chaining[3] = xmm3; #ifdef IACA_TRACE IACA_END; #endif return; } void OF512( v128_t* chaining ) { static v128_t xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; static v128_t xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; static v128_t TEMP0; static v128_t TEMP1; static v128_t TEMP2; /* load CV into registers xmm8, xmm10, xmm12, xmm14 */ xmm8 = chaining[0]; xmm10 = chaining[1]; xmm12 = chaining[2]; xmm14 = chaining[3]; /* there are now 2 rows of the CV in one xmm register */ /* unpack to get 1 row of P (64 bit) into one half of an xmm register */ /* result: the 8 input rows of P in xmm8 - xmm15 */ Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0); /* compute the permutation P */ /* result: the output of P(CV) in xmm8 - xmm15 */ ROUNDS_P_Q(); /* unpack again to get two rows of P in one xmm register */ /* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */ Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15); /* xor CV to P output (feed-forward) */ /* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */ xmm8 = v128_xor(xmm8, (chaining[0])); xmm10 = v128_xor(xmm10, (chaining[1])); xmm12 = v128_xor(xmm12, (chaining[2])); xmm14 = v128_xor(xmm14, (chaining[3])); /* transform state back from row ordering into column ordering */ /* result: final hash value in xmm9, xmm11 */ Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0); /* we only need to return the truncated half of the state */ chaining[2] = xmm9; chaining[3] = xmm11; }