/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */ /* * SHA-384 / SHA-512 implementation. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2007-2010 Projet RNRT SAPHIR * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @author Thomas Pornin */ #if defined(__AVX__) #include #include #include "sha2-hash-4way.h" #include // SHA-256 32 bit static const sph_u32 H256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; static const sph_u32 K256[64] = { SPH_C32(0x428A2F98), SPH_C32(0x71374491), SPH_C32(0xB5C0FBCF), SPH_C32(0xE9B5DBA5), SPH_C32(0x3956C25B), SPH_C32(0x59F111F1), SPH_C32(0x923F82A4), SPH_C32(0xAB1C5ED5), SPH_C32(0xD807AA98), SPH_C32(0x12835B01), SPH_C32(0x243185BE), SPH_C32(0x550C7DC3), SPH_C32(0x72BE5D74), SPH_C32(0x80DEB1FE), SPH_C32(0x9BDC06A7), SPH_C32(0xC19BF174), SPH_C32(0xE49B69C1), SPH_C32(0xEFBE4786), SPH_C32(0x0FC19DC6), SPH_C32(0x240CA1CC), SPH_C32(0x2DE92C6F), SPH_C32(0x4A7484AA), SPH_C32(0x5CB0A9DC), SPH_C32(0x76F988DA), SPH_C32(0x983E5152), SPH_C32(0xA831C66D), SPH_C32(0xB00327C8), SPH_C32(0xBF597FC7), SPH_C32(0xC6E00BF3), SPH_C32(0xD5A79147), SPH_C32(0x06CA6351), SPH_C32(0x14292967), SPH_C32(0x27B70A85), SPH_C32(0x2E1B2138), SPH_C32(0x4D2C6DFC), SPH_C32(0x53380D13), SPH_C32(0x650A7354), SPH_C32(0x766A0ABB), SPH_C32(0x81C2C92E), SPH_C32(0x92722C85), SPH_C32(0xA2BFE8A1), SPH_C32(0xA81A664B), SPH_C32(0xC24B8B70), SPH_C32(0xC76C51A3), SPH_C32(0xD192E819), SPH_C32(0xD6990624), SPH_C32(0xF40E3585), SPH_C32(0x106AA070), SPH_C32(0x19A4C116), SPH_C32(0x1E376C08), SPH_C32(0x2748774C), SPH_C32(0x34B0BCB5), SPH_C32(0x391C0CB3), SPH_C32(0x4ED8AA4A), SPH_C32(0x5B9CCA4F), SPH_C32(0x682E6FF3), SPH_C32(0x748F82EE), SPH_C32(0x78A5636F), SPH_C32(0x84C87814), SPH_C32(0x8CC70208), SPH_C32(0x90BEFFFA), SPH_C32(0xA4506CEB), SPH_C32(0xBEF9A3F7), SPH_C32(0xC67178F2) }; // SHA-256 4 way #define SHA2s_MEXP( a, b, c, d ) \ _mm_add_epi32( _mm_add_epi32( _mm_add_epi32( \ SSG2_1( W[a] ), W[b] ), SSG2_0( W[c] ) ), W[d] ); #define CHs(X, Y, Z) \ _mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z ) #define MAJs(X, Y, Z) \ _mm_or_si128( _mm_and_si128( X, Y ), \ _mm_and_si128( _mm_or_si128( X, Y ), Z ) ) #define BSG2_0(x) \ _mm_xor_si128( _mm_xor_si128( \ mm_rotr_32(x, 2), mm_rotr_32(x, 13) ), mm_rotr_32( x, 22) ) #define BSG2_1(x) \ _mm_xor_si128( _mm_xor_si128( \ mm_rotr_32(x, 6), mm_rotr_32(x, 11) ), mm_rotr_32( x, 25) ) #define SSG2_0(x) \ _mm_xor_si128( _mm_xor_si128( \ mm_rotr_32(x, 7), mm_rotr_32(x, 18) ), _mm_srli_epi32(x, 3) ) #define SSG2_1(x) \ _mm_xor_si128( _mm_xor_si128( \ mm_rotr_32(x, 17), mm_rotr_32(x, 19) ), _mm_srli_epi32(x, 10) ) #define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \ do { \ register __m128i T1, T2; \ T1 = _mm_add_epi32( _mm_add_epi32( _mm_add_epi32( \ _mm_add_epi32( H, BSG2_1(E) ), CHs(E, F, G) ), \ _mm_set1_epi32( K256[( (j)+(i) )] ) ), W[i] ); \ T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \ D = _mm_add_epi32( D, T1 ); \ H = _mm_add_epi32( T1, T2 ); \ } while (0) static void sha256_4way_round( __m128i *in, __m128i r[8] ) { register __m128i A, B, C, D, E, F, G, H; __m128i W[16]; W[ 0] = mm_bswap_32( in[ 0] ); W[ 1] = mm_bswap_32( in[ 1] ); W[ 2] = mm_bswap_32( in[ 2] ); W[ 3] = mm_bswap_32( in[ 3] ); W[ 4] = mm_bswap_32( in[ 4] ); W[ 5] = mm_bswap_32( in[ 5] ); W[ 6] = mm_bswap_32( in[ 6] ); W[ 7] = mm_bswap_32( in[ 7] ); W[ 8] = mm_bswap_32( in[ 8] ); W[ 9] = mm_bswap_32( in[ 9] ); W[10] = mm_bswap_32( in[10] ); W[11] = mm_bswap_32( in[11] ); W[12] = mm_bswap_32( in[12] ); W[13] = mm_bswap_32( in[13] ); W[14] = mm_bswap_32( in[14] ); W[15] = mm_bswap_32( in[15] ); A = r[0]; B = r[1]; C = r[2]; D = r[3]; E = r[4]; F = r[5]; G = r[6]; H = r[7]; SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 ); for ( int j = 16; j < 64; j += 16 ) { W[ 0] = SHA2s_MEXP( 14, 9, 1, 0 ); W[ 1] = SHA2s_MEXP( 15, 10, 2, 1 ); W[ 2] = SHA2s_MEXP( 0, 11, 3, 2 ); W[ 3] = SHA2s_MEXP( 1, 12, 4, 3 ); W[ 4] = SHA2s_MEXP( 2, 13, 5, 4 ); W[ 5] = SHA2s_MEXP( 3, 14, 6, 5 ); W[ 6] = SHA2s_MEXP( 4, 15, 7, 6 ); W[ 7] = SHA2s_MEXP( 5, 0, 8, 7 ); W[ 8] = SHA2s_MEXP( 6, 1, 9, 8 ); W[ 9] = SHA2s_MEXP( 7, 2, 10, 9 ); W[10] = SHA2s_MEXP( 8, 3, 11, 10 ); W[11] = SHA2s_MEXP( 9, 4, 12, 11 ); W[12] = SHA2s_MEXP( 10, 5, 13, 12 ); W[13] = SHA2s_MEXP( 11, 6, 14, 13 ); W[14] = SHA2s_MEXP( 12, 7, 15, 14 ); W[15] = SHA2s_MEXP( 13, 8, 0, 15 ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); } r[0] = _mm_add_epi32( r[0], A ); r[1] = _mm_add_epi32( r[1], B ); r[2] = _mm_add_epi32( r[2], C ); r[3] = _mm_add_epi32( r[3], D ); r[4] = _mm_add_epi32( r[4], E ); r[5] = _mm_add_epi32( r[5], F ); r[6] = _mm_add_epi32( r[6], G ); r[7] = _mm_add_epi32( r[7], H ); } void sha256_4way_init( sha256_4way_context *sc ) { sc->count_high = sc->count_low = 0; sc->val[0] = _mm_set1_epi32( H256[0] ); sc->val[1] = _mm_set1_epi32( H256[1] ); sc->val[2] = _mm_set1_epi32( H256[2] ); sc->val[3] = _mm_set1_epi32( H256[3] ); sc->val[4] = _mm_set1_epi32( H256[4] ); sc->val[5] = _mm_set1_epi32( H256[5] ); sc->val[6] = _mm_set1_epi32( H256[6] ); sc->val[7] = _mm_set1_epi32( H256[7] ); } void sha256_4way( sha256_4way_context *sc, const void *data, size_t len ) { __m128i *vdata = (__m128i*)data; size_t ptr; const int buf_size = 64; ptr = (unsigned)sc->count_low & (buf_size - 1U); while ( len > 0 ) { size_t clen; uint32_t clow, clow2; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_128( sc->buf + (ptr>>2), vdata, clen>>2 ); vdata = vdata + (clen>>2); ptr += clen; len -= clen; if ( ptr == buf_size ) { sha256_4way_round( sc->buf, sc->val ); ptr = 0; } clow = sc->count_low; clow2 = SPH_T32( clow + clen ); sc->count_low = clow2; if ( clow2 < clow ) sc->count_high++; } } void sha256_4way_close( sha256_4way_context *sc, void *dst ) { unsigned ptr, u; uint32_t low, high; const int buf_size = 64; const int pad = buf_size - 8; ptr = (unsigned)sc->count_low & (buf_size - 1U); sc->buf[ ptr>>2 ] = _mm_set1_epi32( 0x80 ); ptr += 4; if ( ptr > pad ) { memset_zero_128( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 ); sha256_4way_round( sc->buf, sc->val ); memset_zero_128( sc->buf, pad >> 2 ); } else memset_zero_128( sc->buf + (ptr>>2), (pad - ptr) >> 2 ); low = sc->count_low; high = (sc->count_high << 3) | (low >> 29); low = low << 3; sc->buf[ pad >> 2 ] = mm_bswap_32( _mm_set1_epi32( high ) ); sc->buf[ ( pad+4 ) >> 2 ] = mm_bswap_32( _mm_set1_epi32( low ) ); sha256_4way_round( sc->buf, sc->val ); for ( u = 0; u < 8; u ++ ) ((__m128i*)dst)[u] = mm_bswap_32( sc->val[u] ); } #if defined(__AVX2__) // SHA-256 8 way #define CHx(X, Y, Z) \ _mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z ) #define MAJx(X, Y, Z) \ _mm256_or_si256( _mm256_and_si256( X, Y ), \ _mm256_and_si256( _mm256_or_si256( X, Y ), Z ) ) #define BSG2_0x(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_32(x, 2), mm256_rotr_32(x, 13) ), mm256_rotr_32( x, 22) ) #define BSG2_1x(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_32(x, 6), mm256_rotr_32(x, 11) ), mm256_rotr_32( x, 25) ) #define SSG2_0x(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_32(x, 7), mm256_rotr_32(x, 18) ), _mm256_srli_epi32(x, 3) ) #define SSG2_1x(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_32(x, 17), mm256_rotr_32(x, 19) ), _mm256_srli_epi32(x, 10) ) #define SHA2x_MEXP( a, b, c, d ) \ _mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \ SSG2_1x( W[a] ), W[b] ), SSG2_0x( W[c] ) ), W[d] ); #define SHA2s_8WAY_STEP(A, B, C, D, E, F, G, H, i, j) \ do { \ register __m256i T1, T2; \ T1 = _mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \ _mm256_add_epi32( H, BSG2_1x(E) ), CHx(E, F, G) ), \ _mm256_set1_epi32( K256[( (j)+(i) )] ) ), W[i] ); \ T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \ D = _mm256_add_epi32( D, T1 ); \ H = _mm256_add_epi32( T1, T2 ); \ } while (0) static void sha256_8way_round( __m256i *in, __m256i r[8] ) { register __m256i A, B, C, D, E, F, G, H; __m256i W[16]; W[ 0] = mm256_bswap_32( in[ 0] ); W[ 1] = mm256_bswap_32( in[ 1] ); W[ 2] = mm256_bswap_32( in[ 2] ); W[ 3] = mm256_bswap_32( in[ 3] ); W[ 4] = mm256_bswap_32( in[ 4] ); W[ 5] = mm256_bswap_32( in[ 5] ); W[ 6] = mm256_bswap_32( in[ 6] ); W[ 7] = mm256_bswap_32( in[ 7] ); W[ 8] = mm256_bswap_32( in[ 8] ); W[ 9] = mm256_bswap_32( in[ 9] ); W[10] = mm256_bswap_32( in[10] ); W[11] = mm256_bswap_32( in[11] ); W[12] = mm256_bswap_32( in[12] ); W[13] = mm256_bswap_32( in[13] ); W[14] = mm256_bswap_32( in[14] ); W[15] = mm256_bswap_32( in[15] ); A = r[0]; B = r[1]; C = r[2]; D = r[3]; E = r[4]; F = r[5]; G = r[6]; H = r[7]; SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); //printf("sha256 8 step: D= %08lx H= %08lx\n",*(uint32_t*)&D,*(uint32_t*)&H); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 ); SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 ); //printf("sha256 8 step: A= %08lx B= %08lx\n",*(uint32_t*)&A,*(uint32_t*)&B); for ( int j = 16; j < 64; j += 16 ) { W[ 0] = SHA2x_MEXP( 14, 9, 1, 0 ); W[ 1] = SHA2x_MEXP( 15, 10, 2, 1 ); W[ 2] = SHA2x_MEXP( 0, 11, 3, 2 ); W[ 3] = SHA2x_MEXP( 1, 12, 4, 3 ); W[ 4] = SHA2x_MEXP( 2, 13, 5, 4 ); W[ 5] = SHA2x_MEXP( 3, 14, 6, 5 ); W[ 6] = SHA2x_MEXP( 4, 15, 7, 6 ); W[ 7] = SHA2x_MEXP( 5, 0, 8, 7 ); W[ 8] = SHA2x_MEXP( 6, 1, 9, 8 ); W[ 9] = SHA2x_MEXP( 7, 2, 10, 9 ); W[10] = SHA2x_MEXP( 8, 3, 11, 10 ); W[11] = SHA2x_MEXP( 9, 4, 12, 11 ); W[12] = SHA2x_MEXP( 10, 5, 13, 12 ); W[13] = SHA2x_MEXP( 11, 6, 14, 13 ); W[14] = SHA2x_MEXP( 12, 7, 15, 14 ); W[15] = SHA2x_MEXP( 13, 8, 0, 15 ); SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); } r[0] = _mm256_add_epi32( r[0], A ); r[1] = _mm256_add_epi32( r[1], B ); r[2] = _mm256_add_epi32( r[2], C ); r[3] = _mm256_add_epi32( r[3], D ); r[4] = _mm256_add_epi32( r[4], E ); r[5] = _mm256_add_epi32( r[5], F ); r[6] = _mm256_add_epi32( r[6], G ); r[7] = _mm256_add_epi32( r[7], H ); } void sha256_8way_init( sha256_8way_context *sc ) { sc->count_high = sc->count_low = 0; sc->val[0] = _mm256_set1_epi32( H256[0] ); sc->val[1] = _mm256_set1_epi32( H256[1] ); sc->val[2] = _mm256_set1_epi32( H256[2] ); sc->val[3] = _mm256_set1_epi32( H256[3] ); sc->val[4] = _mm256_set1_epi32( H256[4] ); sc->val[5] = _mm256_set1_epi32( H256[5] ); sc->val[6] = _mm256_set1_epi32( H256[6] ); sc->val[7] = _mm256_set1_epi32( H256[7] ); } void sha256_8way( sha256_8way_context *sc, const void *data, size_t len ) { __m256i *vdata = (__m256i*)data; size_t ptr; const int buf_size = 64; /* printf("sha256 8 update1: len= %d\n", len); uint32_t* d = (uint32_t*)data; printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[128],d[136],d[144],d[152]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[160],d[168],d[176],d[184]); printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[192],d[200],d[208],d[216]); */ ptr = (unsigned)sc->count_low & (buf_size - 1U); while ( len > 0 ) { size_t clen; uint32_t clow, clow2; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_256( sc->buf + (ptr>>2), vdata, clen>>2 ); vdata = vdata + (clen>>2); ptr += clen; len -= clen; if ( ptr == buf_size ) { /* printf("sha256 8 update2: compress\n"); d = (uint32_t*)sc->buf; printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]); d= (uint32_t*)sc->val; printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); */ sha256_8way_round( sc->buf, sc->val ); /* printf("sha256 8 update3\n"); d= (uint32_t*)sc->val; printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); */ ptr = 0; } clow = sc->count_low; clow2 = SPH_T32( clow + clen ); sc->count_low = clow2; if ( clow2 < clow ) sc->count_high++; } } void sha256_8way_close( sha256_8way_context *sc, void *dst ) { unsigned ptr, u; uint32_t low, high; const int buf_size = 64; const int pad = buf_size - 8; ptr = (unsigned)sc->count_low & (buf_size - 1U); /* printf("sha256 8 close1: ptr= %d\n", ptr); uint32_t* d = (uint32_t*)sc->buf; printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]); */ sc->buf[ ptr>>2 ] = _mm256_set1_epi32( 0x80 ); ptr += 4; if ( ptr > pad ) { memset_zero_256( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 ); //printf("sha256 8 close2: compress\n"); //uint32_t* d = (uint32_t*)sc->buf; //printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); sha256_8way_round( sc->buf, sc->val ); //d= (uint32_t*)sc->val; //printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); memset_zero_256( sc->buf, pad >> 2 ); } else memset_zero_256( sc->buf + (ptr>>2), (pad - ptr) >> 2 ); low = sc->count_low; high = (sc->count_high << 3) | (low >> 29); low = low << 3; sc->buf[ pad >> 2 ] = mm256_bswap_32( _mm256_set1_epi32( high ) ); sc->buf[ ( pad+4 ) >> 2 ] = mm256_bswap_32( _mm256_set1_epi32( low ) ); /* d = (uint32_t*)sc->buf; printf("sha256 8 close3: compress\n"); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]); printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]); d= (uint32_t*)sc->val; printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); */ sha256_8way_round( sc->buf, sc->val ); /* printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]); printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]); */ for ( u = 0; u < 8; u ++ ) ((__m256i*)dst)[u] = mm256_bswap_32( sc->val[u] ); } // SHA-512 4 way 64 bit static const sph_u64 H512[8] = { SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B), SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1), SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F), SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179) }; static const sph_u64 K512[80] = { SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD), SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC), SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019), SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118), SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE), SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2), SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1), SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694), SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3), SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65), SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483), SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5), SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210), SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4), SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725), SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70), SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926), SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF), SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8), SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B), SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001), SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30), SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910), SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8), SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53), SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8), SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB), SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3), SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60), SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC), SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9), SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B), SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207), SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178), SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6), SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B), SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493), SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C), SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A), SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817) }; #define CH(X, Y, Z) \ _mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z ) #define MAJ(X, Y, Z) \ _mm256_or_si256( _mm256_and_si256( X, Y ), \ _mm256_and_si256( _mm256_or_si256( X, Y ), Z ) ) #define BSG5_0(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_64(x, 28), mm256_rotr_64(x, 34) ), mm256_rotr_64(x, 39) ) #define BSG5_1(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_64(x, 14), mm256_rotr_64(x, 18) ), mm256_rotr_64(x, 41) ) #define SSG5_0(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_64(x, 1), mm256_rotr_64(x, 8) ), _mm256_srli_epi64(x, 7) ) #define SSG5_1(x) \ _mm256_xor_si256( _mm256_xor_si256( \ mm256_rotr_64(x, 19), mm256_rotr_64(x, 61) ), _mm256_srli_epi64(x, 6) ) #define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \ do { \ register __m256i T1, T2; \ T1 = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64( \ _mm256_add_epi64( H, BSG5_1(E) ), CH(E, F, G) ), \ _mm256_set1_epi64x( K512[i] ) ), W[i] ); \ T2 = _mm256_add_epi64( BSG5_0(A), MAJ(A, B, C) ); \ D = _mm256_add_epi64( D, T1 ); \ H = _mm256_add_epi64( T1, T2 ); \ } while (0) static void sha512_4way_round( __m256i *in, __m256i r[8] ) { int i; register __m256i A, B, C, D, E, F, G, H; __m256i W[80]; for ( i = 0; i < 16; i++ ) W[i] = mm256_bswap_64( in[i] ); for ( i = 16; i < 80; i++ ) W[i] = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64( SSG5_1( W[ i-2 ] ), W[ i-7 ] ), SSG5_0( W[ i-15 ] ) ), W[ i-16 ] ); A = r[0]; B = r[1]; C = r[2]; D = r[3]; E = r[4]; F = r[5]; G = r[6]; H = r[7]; for ( i = 0; i < 80; i += 8 ) { SHA3_4WAY_STEP( A, B, C, D, E, F, G, H, i + 0 ); SHA3_4WAY_STEP( H, A, B, C, D, E, F, G, i + 1 ); SHA3_4WAY_STEP( G, H, A, B, C, D, E, F, i + 2 ); SHA3_4WAY_STEP( F, G, H, A, B, C, D, E, i + 3 ); SHA3_4WAY_STEP( E, F, G, H, A, B, C, D, i + 4 ); SHA3_4WAY_STEP( D, E, F, G, H, A, B, C, i + 5 ); SHA3_4WAY_STEP( C, D, E, F, G, H, A, B, i + 6 ); SHA3_4WAY_STEP( B, C, D, E, F, G, H, A, i + 7 ); } r[0] = _mm256_add_epi64( r[0], A ); r[1] = _mm256_add_epi64( r[1], B ); r[2] = _mm256_add_epi64( r[2], C ); r[3] = _mm256_add_epi64( r[3], D ); r[4] = _mm256_add_epi64( r[4], E ); r[5] = _mm256_add_epi64( r[5], F ); r[6] = _mm256_add_epi64( r[6], G ); r[7] = _mm256_add_epi64( r[7], H ); } void sha512_4way_init( sha512_4way_context *sc ) { sc->count = 0; sc->val[0] = _mm256_set1_epi64x( H512[0] ); sc->val[1] = _mm256_set1_epi64x( H512[1] ); sc->val[2] = _mm256_set1_epi64x( H512[2] ); sc->val[3] = _mm256_set1_epi64x( H512[3] ); sc->val[4] = _mm256_set1_epi64x( H512[4] ); sc->val[5] = _mm256_set1_epi64x( H512[5] ); sc->val[6] = _mm256_set1_epi64x( H512[6] ); sc->val[7] = _mm256_set1_epi64x( H512[7] ); } void sha512_4way( sha512_4way_context *sc, const void *data, size_t len ) { __m256i *vdata = (__m256i*)data; size_t ptr; const int buf_size = 128; ptr = (unsigned)sc->count & (buf_size - 1U); while ( len > 0 ) { size_t clen; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_256( sc->buf + (ptr>>3), vdata, clen>>3 ); vdata = vdata + (clen>>3); ptr += clen; len -= clen; if ( ptr == buf_size ) { sha512_4way_round( sc->buf, sc->val ); ptr = 0; } sc->count += clen; } } void sha512_4way_close( sha512_4way_context *sc, void *dst ) { unsigned ptr, u; const int buf_size = 128; const int pad = buf_size - 16; ptr = (unsigned)sc->count & (buf_size - 1U); sc->buf[ ptr>>3 ] = _mm256_set1_epi64x( 0x80 ); ptr += 8; if ( ptr > pad ) { memset_zero_256( sc->buf + (ptr>>3), (buf_size - ptr) >> 3 ); sha512_4way_round( sc->buf, sc->val ); memset_zero_256( sc->buf, pad >> 3 ); } else memset_zero_256( sc->buf + (ptr>>3), (pad - ptr) >> 3 ); sc->buf[ pad >> 3 ] = mm256_bswap_64( _mm256_set1_epi64x( sc->count >> 61 ) ); sc->buf[ ( pad+8 ) >> 3 ] = mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) ); sha512_4way_round( sc->buf, sc->val ); for ( u = 0; u < 8; u ++ ) ((__m256i*)dst)[u] = mm256_bswap_64( sc->val[u] ); } #endif // __AVX2__ #endif // __AVX__