// Copyright (c) 2014 The Magi developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include "magimath.h" #define EPS1 (std::numeric_limits::epsilon()) #define EPS2 3.0e-11 static void gauleg(double x1, double x2, double x[], double w[], const int n) { int m,j,i; double z1, z, xm, xl, pp, p3, p2, p1; m=(n+1)/2; xm=0.5*(x2+x1); xl=0.5*(x2-x1); for (i=1;i<=m;i++) { z=cos(3.141592654*(i-0.25)/(n+0.5)); do { p1=1.0; p2=0.0; for (j=1;j<=n;j++) { p3=p2; p2=p1; p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j; } pp=n*(z*p1-p2)/(z*z-1.0); z1=z; z=z1-p1/pp; } while (fabs(z-z1) > EPS2); x[i]=xm-xl*z; x[n+1-i]=xm+xl*z; w[i]=2.0*xl/((1.0-z*z)*pp*pp); w[n+1-i]=w[i]; } } static double GaussianQuad_N(double func(const double), const double a2, const double b2, const int NptGQ) { double s=0.0; #ifdef _MSC_VER #define SW_DIVS 23 double x[SW_DIVS+1], w[SW_DIVS+1]; #else double x[NptGQ+1], w[NptGQ+1]; #endif gauleg(a2, b2, x, w, NptGQ); for (int j=1; j<=NptGQ; j++) { s += w[j]*func(x[j]); } return s; } static double swit_(double wvnmb) { return pow( (5.55243*(exp_n(-0.3*wvnmb/15.762) - exp_n(-0.6*wvnmb/15.762)))*wvnmb, 0.5) / 1034.66 * pow(sin(wvnmb/65.), 2.); } uint32_t sw_(int nnounce, int divs) { double wmax = ((sqrt((double)(nnounce))*(1.+EPS1))/450+100); return ((uint32_t)(GaussianQuad_N(swit_, 0., wmax, divs)*(1.+EPS1)*1.e6)); }